Меню

Защита трубопроводов от коррозии блуждающих токов



Защита трубопроводов от коррозии блуждающими токами

Блуждающими токами называют постоянные токи, которые стекают с ка­кого-либо проводника, проходят в грунте до встречи с трубопроводом (или другим металлическим протяженным сооружением), входят в него и, пройдя по нему некоторое расстояние, выходят в грунт и возвращаются в исходный проводник. Из этого описания видно, что грунт и трубопровод являются свое­образным шунтирующим элементом, уменьшающим сопротивление в цепи тока на каком-то участке электропроводника. Схема такого процесса изобра­жена на рис 15.8. Трубопровод 2 проходит вблизи электрифицированной железной дороги 1. Допустим, что на каком-то участке в трубопроводе име­ются повреждения изоляции; ток, стекающий с рельсов в грунт, попадает по нему в трубопровод (зона К). Эта зона является катодом. Далее ток про­ходит по участку трубопровода, который имеет хорошее защитное покрытие lн. Этот участок называют нейтральным, так как вредного корродирующего дей­ствия этот ток на трубопровод не оказывает. Дойдя до места нарушения сплош­ности изоляции (зона А), ток выходит в грунт и по нему возвращается в рельсы. Зона А является анодом и поэтому подвергается интенсивному электрохими­ческому коррозионному разрушению. Если не предусмотреть своевременно защитные меры, то в зоне А трубы будут довольно быстро разрушены. Блужда­ющие токи опасны тем, что они могут возникать от источника, который иногда находится на очень большом расстоянии от трубопровода, например 10 и даже 20 км. Наибольшую опасность представляет постоянный ток; но и перемен­ный также вызывает электрохимическую коррозию, хотя и значительно менее интенсивную, чем постоянный.

Рисунок 15.8 – Схема образования коррозии от блуждающих токов

В соответствии со схемой образования и существования блуждающих токов можно наметить несколько путей борьбы с этим явле­нием:

— защита токопроводящего сооружения рельсов от контакта с грунтом. В этом случае устраняется возможность утечек тока, а следовательно, и воз­никновения блуждающих токов;

— устройство надежной изоляции труб, исключающее попадание тока в трубо­провод; особенно важным является понимание и неуклонное соблюдение при строительстве трубопровода требования о сохранении целостности изоляцион­ного покрытия;

— отвод токов, попавших в трубопровод, обратно в источник вытекания (например, рельсы):

— электрическое секционирование трубопровода;

— выбор такой трассы трубопровода, при которой в зоне действия блужда­ющих токов будет как можно малая часть его общей длины.

Из перечисленных путей только первый не зависит от организаций, зани­мающихся проектированием, строительством и эксплуатацией трубопроводов.

Существует несколько видов электродренажа: прямой, поляризованный, усиленный.

Рисунок 15.9 – Электрические схемы дренажа

Прямым называют дренаж, при котором ток может идти в любом направлении, т. е. из рельсов в трубопровод и наобо­рот. Электрическая схема прямого дренажа изображена на рис. 15.9а. В состав цепи прямого дренажа входят трубопро­вод 1 и рельсы 6, переменное сопротивление 2, клеммы 3 для подключения шунта амперметра, выключатель 4, плавкий пре­дохранитель 5. Эти элементы схемы необходимы для предохра­нения цепи при большой силе дренируемого тока, достигаю­щего иногда нескольких сот ампер.

Поляризованным называют дренаж, при котором ток может идти только с трубопровода в рельсы. Этот вид дренаж применяют в тех случаях, когда разность потенциалов трубопро­вод – рельсы больше разности потенциалов труба – земля. Поляризованный дренаж обеспечивает постоянный более отрицательный потенциал защищаемого трубопровода. Отличие в электрической схеме поляризованного дренажа заключается в установке выпрямителя В, пропускающего ток только в направлении от труб к рельсам (рис. 15.9б). Разработаны специальные дренажные установки различных типов (ПГД – поляризованные с германиевыми диодами, УПД – универсальные поляризованные дренажные установки и др.). Эти установки изготовлены в виде шкафов, которые мо­гут быть расположены в необходимых местах и подключены к соединительному кабелю. Сила тока дренирования, обеспечи­ваемого различными поляризованными электродренажами, мо­жет достигать 300 А.

Усиленным называют дренаж, который не только отводит ток из трубопровода в рельсы, но и создает эффект катодной защиты с использованием в качестве анода рельсов (рис. 15.10). Тем самым достигается более эффективная защита трубопро­вода. Для этой цели используют СКЗ, подключая отрицатель­ный полюс ее к защищаемому сооружению, а положительный – к рельсам.

Промышленностью серийно изготавливаются установки для усиленного дренажа, работающие в автоматиче­ском режиме, т. е. поддерживающие на трубопроводе задан­ный защитный потенциал при изменении силы блуждающего тока. Потенциал накладываемый на трубопровод, ограничива­ется максимальным значением 1,5 В по медносульфатному электроду сравнения.

Технология устройства дренажной защиты включает мон­таж шкафа с дренажной установкой, рытье траншей под дре­нажный кабель, укладку кабеля и траншею и засыпку его грунтом, присоединение кабеля к дренажной установке и к рельсам. Шкаф дренажной установки монтируют па фундаменте, раз­меры которого и плане соответствуют размерам шкафа. Тран­шея под кабель отрывается на глубину 0,8 м, кабель в ней ук­ладывают змейкой. При пересечении трасс каких-либо металлических сооружении кабель укладывают в асбоцементную трубу и заливают оставшееся пространство битумом.

Рисунок 15.10 – Схема усиленного дренажа

Под кабель должна быть сделана подсыпка из песчаного грунта. При засыпке кабеля через 100 – 150м, а также на всех поворотах устанавливают знаки, отмечающие плановое положение кабеля. Засыпают кабель грунтом с утрамбовкой его, а в зимний пе­риод –слоем сухого песка. К рельсам подключают кабель с помощью болтовых зажимов, а к трубопроводу – с помощью термитной сварки. После окончания всех контактных работ проводятся необхо­димые контрольные замеры и составляется акт приема дренаж­ной защиты.

Контрольные вопросы

1. Виды коррозии.

2. Способы защиты магистральных трубопроводов от коррозии.

3. Катодная защита трубопроводов от коррозии.

4. Протекторная защита трубопроводов от коррозии.

5. Защита трубопроводов от внутренней коррозии.

6. Защита трубопроводов от коррозии блуждающими токами.

Источник

Что такое блуждающие токи и как от них избавиться?

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.). После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи. Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Образование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Рельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).
Читайте также:  Инструкции по проектированию трубопроводов газообразного кислорода минхимпр

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу. Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом. Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Рисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Как измерить блуждающие токи?

Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:

  • Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
  • Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
  • Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
  • Оценка плотности тока утечки с оболочки кабельных линий в грунт.

Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.

Набор инструментов для измерения блуждающих токов

Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями. При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции. Если между потенциалами на электродах появляется разность, она фиксируется прибором.

Рекомендуем также почитать:

Источник

Блуждающие токи, защита от блуждающих токов

Защита от блуждающего тока

Наилучшим способом будет решение заземлить все металлические трубо- и газопроводы, а также все электротехнические изделия, находящиеся в доме или квартире. Суть метода проста, блуждающий ток протекает из места с высоким потенциалом в место с более низким. Применение, в данном случае, заземления выравнивает разность потенциалов, тем самым, исключая возможность возникновения блуждающих токов. Есть еще одна тонкость в использовании водопровода. Вода (кроме дистиллированной) является отличным проводником и даже замена металлических труб на пластиковые не всегда является защитой от блуждающих токов. Там где смеситель, пусть даже слегка, соприкасается с токопроводящей поверхностью (которой может быть и стена) тоже могут возникать блуждающие токи. Конечно, в большинстве случаев такого не происходит, в данной статье речь идет о местах, где блуждающие токи стали обыденной вещью. Кстати, сама вода, за счет трения о стенки труб тоже может вырабатывать электрическое статическое напряжение (хотя это нельзя назвать блуждающим током и вряд ли это приведет к быстрой поломке смесителя, но это может неприятно ударять током при касании смесителя). Как можно понять из вышесказанного, чтобы обезопасить себя от блуждающих токов нужно не только заземлить все металлические проводники, но и краны, смесители и прочие металлические части трубопроводов, если часть трубопровода была заменена на пластиковые трубы. Что касается блуждающих токов от телерадиовышки, то простое заземление не поможет. Дело в том, что от телерадиовышки мы получаем блуждающий ток высокой частоты, снять который можно только при помощи телевизионного антенного кабеля. Следовательно, если у вас такой случай, то вместо обычного провода для заземления придется использовать антенный.

Что же касается более глобальных защит магистральных водопроводов, то могут использовать оборудование, способное определить блуждающий ток и пустить, своего рода, контрток, то есть, это оборудование способно электрическим способом создать в определенных точках трубопровода такой же потенциал, что и на источнике блуждающего тока. По законам физики, это создаст очень большое сопротивление для блуждающего тока, и он начнет искать, как я уже говорил, путь с наименьшим сопротивлением. Где он вылезет после подобных мер, никто сказать не сможет, но задача по защите магистральных трубопроводов будет выполнена. По сути, свести к минимуму проявление блуждающих токов можно, но для этого нужно определить, где они появляются и сделать там более тщательную изоляцию.


Еще один способ защиты трубопроводов и кабелей это использовать диэлектрическую изоляцию (для кабелей и труб) или делать водопроводные трассы с использованием пластиковых труб.

Что такое блуждающие токи, их вред и способы защиты

Вы когда-нибудь слышали такое выражение как «Блуждающие токи»? Нет? Так вот это направленное движение заряженных частиц, возникающее в естественном проводнике. И на самом деле это очень опасное и крайне нежелательное явление. В этой статье я расскажу, каким образом они появляются и как с ними ведут борьбу. Итак, поехали.

Что такое блуждающие токи и как они формируются

Все мы с вами знаем, что условием для формирования электрического тока является наличие разности потенциалов между двумя точками и наличие специально предназначенного для передачи электроэнергии проводника.

Читайте также:  Трубы полипропиленовые армированные в барнауле

Так вот, блуждающие токи формируются по такому же принципу, только вот для транспортировки энергии используется естественный проводник (земля) либо металлическая конструкция, помещенная в эту землю.

С принципом появления этих токов вроде все просто, теперь давайте узнаем, что формирует их.

Источники блуждающих токов

Если мы с вами посмотрим на современный мегаполис, то найдем там просто огромное количество электрифицированных объектов, начиная от крупных питающих подстанций с отходящими линиями электропередач, заканчивая электричками и метро.

И все эти энергообъекты расположены на земле или под землей, что, безусловно, приводит к их довольно сложному взаимодействию через землю и формированию блуждающих токов.

Выше в таблице представлены основные источники блуждающих токов, давайте для лучшего понимания механизма формирования рассмотрим пример.

Итак, для формирования точек с разными потенциалами идеально подходят заземляющие контура в системе с глухо заземленной нейтралью.

При этом нулевой провод PEN с одной стороны соединен с ЗУ на подстанции, а с другой к заземляющей шине у потребителя.

Повреждение изоляции кабелей, проложенных в земле так же создают условия для формирования этих токов. Ну, сформировались они и что дальше? А вот затем начинается самое интересное.

Влияние блуждающих токов на металл

Скажите, что происходит с куском металла, если его закопать в землю? Правильно, под действием влаги и растворенных в ней солей запускается процесс коррозии.

А ток сформировался и отправился впить от одного заземления к другому и если на его пути появится металлический предмет, то блуждающий ток потечет именно по нему, так как металл обладает гораздо меньшим сопротивлением, чем грунт.

yandex.ruА сочетание: растворенные соли, протекающий электрический ток и металл (играющий роль электродов) запускают электролитический процесс, причем скорость протекания электрохимической реакции, по закону Фарадея, имеет прямую зависимость от величины тока проходящего между анодом и катодом.

А это значит, что на скорость коррозии, например, металлической водопроводной трубы будет оказывать влияние электрическое сопротивление грунта и сложные процессы, проходящие, в анодной и катодной зоне.

Что происходит в катодно-анодной зоне

Итак, наш ток по земле дошел до металлической трубы и нашел «точку входа» (свободные электроны втекают в проводник), эта область называется катодной и для металлической конструкции не представляет угрозы.

Но наш ток продолжает путь к другому полюсы разностей потенциалов и рано или поздно выходит из металла обратно в почву, так вот место выхода блуждающего тока называется анодной областью и вылетающие электроны «вымывают» атомы металла в данной области, тем самым в значительной степени ускоряя процесс коррозии.

И труба, которая должна по всем нормативам прослужить минимум 20 лет через пару лет может приобрести такой вид

Как защититься от блуждающих токов

Как вы уже поняли блуждающие токи крайне опасное и нежелательное явление и от него существуют два способа защиты:

1. Пассивная защита.

2. Активная защита.

Итак, к пассивной защите, например, трубопровода относят нанесение на трубу специального изоляционного материала, который отгораживает металл от агрессивной среды. В качестве изоляции обычно используются разнообразные полимерные соединения, эпоксидные смолы, битумная пропитка и т.п.

Но такая изоляция не дает стопроцентной защиты, да и при укладке и в процессе эксплуатации можно повредить оболочку и тем самым процесс коррозии будет протекать в этом месте очень интенсивно.

Гораздо эффективней себя показала активная защита

Способы защиты

Блуждающие токи – явление вредное для металлов и опасное для человека. Существуют два вида защиты:

Названия говорят сами за себя, но только сочетание обоих видов помогает, если не свести на «нет», то хотя бы намного ослабить негативные влияния БТ.

Пассивная защита

Суть такого метода заключается в нанесении специальных защитных покрытий на металлические элементы, находящиеся в земле. В частности, поверхности трубопроводов покрываются специальными изоляционными покрытиями:

  • битумными мастиками;
  • смолами и полимерными соединениями;
  • грунтовками;
  • изоляционными лентами.

Монтаж защищённых таким способом конструкций требует особой осторожности. Механические повреждения защитного слоя превратятся в места активного электрокоррозирования

Активная защита

В этом варианте контролируют протекание БТ, который сам по себе неуправляем изначально. Для этого используют катодную поляризацию. Устраивают катодную защиту, при которой выполняют замещение естественного отрицательного потенциала на искусственный. Отрицательный потенциал подаётся на защищаемую конструкцию.

Схема устройства катодной защиты

Внимание! При устройстве подобной защиты применяются два метода: гальванический или с использованием источника тока (ИТ) постоянного направления. Первый – на почвах, имеющих сопротивление 50 Ом/м или менее

Второй – при превышении этого значения.

Гальваническое решение подразумевает использование анода, на котором собирается весь БТ. Подвергаться коррозии будет этот «жертвенный анод», а не сама конструкция. Материал для такого анода берётся с электроотрицательностью выше, чем у металла объекта.

Использование ИТ позволяет подавать разноимённые потенциалы непосредственно на конструкцию и анодный контур. При этом возможна регулировка величины потенциалов для различных видов почвы.

Применение ИПТ (источника постоянного тока) для защиты

Защита водопроводных труб

Строительство водоводов при водоснабжении объектов выполняется с обязательным определением локации блуждающих токов в водопроводных трубах. Это реализуется при помощи замеров разности потенциалов. Для этого берутся (выборочно) две точки на поверхности грунта с перпендикулярным взаиморасположением. Для защиты водопроводов применяют оба способа: активный и пассивный.

Защита полотенцесушителей

В последнее время разводка воды в квартире выполняется пластиковыми трубами, но полотенцесушитель всегда выполнен из нержавеющего металла. В случае использования металлопластиковых труб алюминий, находящийся внутри, может быть соединён с сушилкой и подводит к ней БТ. Даже частичные вставки в контур водопровода, выполненный из изоляционного материала, может вызвать коррозию от БТ. Чтобы избавиться от таких токов и не допустить коррозии, выполняют следующее:

  • соединяют между собой проводниками все металлические элементы в квартире: батарею, кран, смеситель, полотенцесушитель и др.;
  • далее полученный контур присоединяют к заземляющим устройствам.

Подобным образом получают выравнивание потенциалов.

Защита полотенцесушителя

Защита газопроводов

Устранить влияние БТ на газопроводы помогает пассивная защита, наносимая на газовые трубы. Состояние изоляции периодически проверяется. Однако такая антикоррозийная броня – это дополнение к катодной защите, которая повсеместно используется в газовом хозяйстве.

Недостатки систем катодной защиты

Кроме главного плюса – наличия защитного потенциала, который позволяет снизить скорость коррозии трубопроводов до минимума, есть минусы. К недостаткам можно отнести то, что при неправильно выполненных расчётах возможна перезащита. В этом случае завышенное смещение потенциала только ускорит процесс разрушения. Сама установка становится источником БТ.

Дополнительные способы снижения действия БТ

К таким способам можно отнести следующие мероприятия:

  • насыпи под рельсы выполнять материалами, имеющими низкую электропроводность;
  • прокладывать подземные коммуникации и наружные ж/д ветки с максимальным разносом друг от друга;
  • в системах энергообеспечения при проектировании переходить на типы заземлений ТN-S.

Применение неметаллических трубопроводов и запорной арматуры при новых прокладках и капитальных ремонтах убирает сам факт электрокоррозии.

Механизм образования блуждающих токов

Рассмотреть алгоритм формирования БТ можно на примере электрической цепи, по которой осуществляется работа двигателя электровоза.

Электрическая подстанция, через линию электропитания (ЛЭП), передаёт ток на контактный (фазный) провод. Провод подвешен на электрических опорах на протяжении всего пути. Токоприёмник электровоза снимает его с провода и подаёт на двигатель, а оттуда – на колёса и рельсы (нулевой провод). Далее по рельсам цепь замыкается снова на электросеть подстанции.

Важно! Рельсы не отделены от почвы диэлектриком. Значит, в грунте появляется потенциал, такой же, как и на них

При нормальном положении дел этот потенциал должен быть одинаковым на всей протяжённости.

К сожалению, на практике это не так. Геометрические изломы реальной железной дороги неидеальны. Связь между металлом и грунтом не всегда одинаковая. Поэтому токи то растекаются по земле, то возвращаются в рельс. Там, где они сталкиваются с подземными коммуникациями: трубопроводами, металлоконструкциями, кабелями, проходят по ним (зона катода). Выходя из металлических проводников (зона анода), попадают снова в грунт. Потом блуждающие токи через землю опять возвращаются в рельс и далее уже попадают на подстанцию.

Образование катодных и анодных зон

Блуждающие токи и методы борьбы с их взаимодействиями

Электрические токи, время и место появления которых пока не поддается предварительному прогнозу называются блуждающими. В отличие от тех электрических токов, которые действуют стационарно и влияние которых на объект можно скомпенсировать с помощью тех или иных мер, блуждающие токи появляются непредсказуемо в произвольном месте. От направления этих токов зависит какой процесс происходит в объекте, через который протекает ток. Если объект имеет положительный потенциал относительно другого объекта или среды, при контакте с которой возникают электрические токи, то наблюдается коррозия (окисление). Если объект имеет отрицательный потенциал, то на нем происходит восстановление параметров того вещества, которое имеется в жидкости, входящей в состав среды, через которую протекает электрический ток.

Так как химическая активность элементов, находящихся в контакте с жидкой средой, представляющей электролит, как правило, неизвестна, то не представляется возможным предсказать время и место появления блуждающего тока. Как принято считать, наличие блуждающего тока приводит к коррозии того объекта, который имеет положительный потенциал относительно жидкой среды, по которой протекает ток ионов. В качестве основной меры, обеспечивающей устранение коррозии в протяженных трубопроводах, применяют так называемую катодную защиту. Для этого на трубу подается достаточно высокое значение отрицательного потенциала, который гарантирует отрицательный потенциал на трубе при любых значениях параметров, которые вызывают блуждающие токи. В известных технических решениях на трубу подается потенциал приблизительно в 6 кВ.

Читайте также:  Как обшить жестью трубу

Считается, что при любых реальных значениях среды и электролита в цепи отсутствует положительный ток, который может вызывать коррозию. Происходит, так называемая катодная защита трубы от коррозии, которая достаточно эффективна, но имеет один недостаток: компоненты, входящие в состав прокачиваемой среды, осаждаются на ее внутренней поверхности. Это различные парафины, которые существенно уменьшают реально используемый диаметр трубы и увеличивают затраты энергии, необходимой для перекачки единицы продукта. Для восстановления исходного внутреннего диаметра трубы необходимо удалять образовавшиеся отложения парафина, для этого применяют механические методы очистки, с помощью специальных «ершей».

Единственно эффективной мерой защиты трубы от коррозии блуждающими токами, является сведение к нулевому значению токов, которые протекают по трубе на различных участках. Для этого трубопровод разбивается на участки, на которые подаются напряжения, обеспечивающие «нулевые» (или стремящиеся к нулю) токи между трубой и окружающей ее средой. «Уравнительный» ток между участками будет протекать по трубе, и не будет вызывать коррозию. Причем нулевое значение тока между трубой и окружающей средой можно поддерживать автоматически, с помощью, специально разработанных средств аналоговой электроники. Значение выходного напряжения у операционных усилителей будет зависеть от значений блуждающих токов и расстояния, на котором они размещены.

При значительном количестве источников блуждающего тока, количество участков между усилителями их компенсации будет существенно больше и больше динамический диапазон изменений их выходных напряжений. Усилители должны быть охвачены стопроцентной отрицательной обратной связью и иметь малый собственный дрейф нуля. При динамическом диапазоне усилителей, выходное напряжение которых может достигать десятков вольт, возможен случай, когда коррозия от электрических токов и осаждение на стенку перекачиваемого продукта будут практически сведена к нулю (при использовании усилителей мало чувствительных к синфазному сигналу). Уравнительный ток между участками будет протекать по трубе и по «земле», не вызывая коррозии у трубы.

Уровень блуждающих токов зависит:

— от электрохимического потенциала объектов, между которыми протекает электрический ток

— от состава среды (электролита) между объектами

— от расстояния, по которому протекает электрический ток

— от наличия электромагнитных полей, пронизывающих объекты и электролит, которые могут создавать выделение радианной энергии (феномен Тесла).

Последнее — особенно опасно, если электромагнитные поля изменяются достаточно быстро.

Варианты возможной защиты

Чтобы защитить изделия из металла от пагубного воздействия применяются различные методы, разделяющиеся по природе их применения на пассивные и активные.

Пассивный вариант

Пассивная изоляция

Этот вариант является применением различного изолирующего материала, формирующего защиту между проводником и металлом. В качестве изоляции применяется:

  • эпоксидная смоляные смеси;
  • включение в состав полимеров;
  • покрытие из битума.

Но если ограничиться только этим вариантом, то полноценной защиты не получится, так как изоляционный материал не является стопроцентным барьером из-за наличия диффузионной проницаемости. Поэтому изоляция происходит в частичный способ. Кроме этого в процессе перемещения труб такой слой может быть поврежден, в результате чего возникают значительные царапины, надрезы, сквозные дыры и прочие изъяны.

Активная защита

Указывает на применение активных способ локализации источника воздействия посредством применения катодной поляризации, где отрицательный заряд смещает естественный.

Чтобы подобную защиту реализовать необходимо применение одного из двух инструментов:

  • Гальванического метода – эффект гальванической пары, выполняется разрушение жертвенного анода, обеспечивая тем самым защиту металлоконструкции. Метод активен при сопротивляемости грунта до 50 Ом на метр, если сопротивляемость ниже метод не действенен.
  • Источника постоянного тока – обеспечивает избегание зависимости от силы сопротивляемости грунта. Используется катодная защита, источник которой заключен в сформированном преобразователе, подключенному к электрической цепи переменного тока. Так как источник специально сформирован посредством его регулирования можно задать необходимый уровень защиты тока, в зависимости от сложившихся обстоятельств.

Активная изоляция

Подобный способ может обеспечить и негативное воздействие:

  • перезащита – превышение необходимого потенциала, как результат происходит разрушение металлического изделия;
  • неверный расчет защиты – приводящий к ускоренному коррозийному разрушению близ расположенных металлических объектов.

Приведенные примеры можно рассмотреть на защите такого изделия как полотенцесушитель.

Коррозийные процессы на таких изделиях или прочих оконечных водопроводных изделиях никогда не происходили, но это было реально до начала применения металлопластиковой трубы, где существует контакт с алюминием внутри стенки. В результате формирование блуждающих элементов происходит не только из-за применения пластиковых труб в непосредственном помещении, но и в прочих, так как в многоквартирном доме они могут быть применены у соседа с другого этажа.

При этом использование так необходимого заземления происходит в отношении любой коммуникации, которая выполнена из металлических труб, например, газопровода в земле.

Типы коррозии нержавеющей стали

Владельцы сушилок из нержавейки часто жалуются, что устройство стало покрываться ржавчиной. Постепенно на поверхности полотенцесушителя появляется все больше пятен диаметром с пару спичечных головок. Если место ржавления протереть, останется едва заметная отметина, которая со временем захватывает все большую поверхность.

Будучи пораженным коррозией, водяной полотенцесушитель начинает протекать. Первопричина разрушительного процесса — блуждающие токи. Металлоконструкции, постоянно контактирующие с водой, подвержены двум типам коррозии: электрохимической и гальванической.

Электрокоррозия развивается, когда металл, по которому проходит электричество, контактирует с водой. Из-за высокой нагрузки возникают так называемые пробои металла, что ведет к развитию коррозийных процессов.

Гальваническая коррозия появляется вследствие взаимодействия разнородных металлов, одному из которых свойственна более высокая химическая активность. При этом электролитом выступает вода вместе с содержащимися в ней минералами и солями. Особенно усиливает электропроводимость горячая вода. В этом случае металл разрушается намного быстрее.

Защита водопровода

Для защиты водопровода используется пассивный и активный метод. Активный состоит в постановке устройства, которое генерирует встречный электрический сигнал. Пассивный способ заключается в применении изолятора. Кроме того, как метод защиты водопровода от блуждающего электротока используется профилактика и комплексная трубопроводная защита. Специалисты покрывают трубы полимерным составом. В результате не происходит коррозия металла.

Защита водопровода

Пассивный вариант

Пассивный вариант — основная мера избавления любой установки от блуждающего электротока. Носит название катодная защита. Благодаря ей устраняется коррозия в протяженных трубопроводах. Чтобы сделать катодную защиту, на трубопровод подается высокий отрицательный потенциал. Он гарантирует сохранение отрицательного трубного потенциала, вне зависимости от параметровых значений, вызываемых блуждающими электротоками в трубопроводных системах. Как правило, подается потенциал, равный 6 киловатт.

Обратите внимание! Считается, что в таком случае, вне зависимости от среды и электролита, положительного заряда нет. Так защищается трубопровод

Этот способ эффективный, но обладает одним существенным недостатком: элементы, которые находятся в среде, осаждаются на ее внутренней поверхности. Это элементы в виде парафинов, существенно уменьшающих диаметр трубы и увеличивающих затраты энергии, которая нужна, чтобы перекачать содержимое труб. Чтобы восстановить исходный внутренний трубный диаметр и удалить парафиновые отложения, обычно используют механическую чистку ершиком.

Пассивный вариант

Активная защита

Единственным эффективным способом защитить трубопровод от коррозии, создаваемой блуждающей энергией, считается сведение к нулю токов, протекающих на разных участках. Для этого трубу мастер разбивает на участки. На них он подает напряжение. Благодаря такому уравнительному способу электричество не вызывает коррозию. При этом возникающий ноль от уравнения поддерживается автоматическим образом аналоговой электроникой.

Показания к заземлению

На самом деле все инженерные системы заземляются еще на этапе строительства здания. Создается система заземления. В старых домах использовалась система уравнивания потенциалов. Эта система подразумевала связь металлических частей системы. Сегдня повсеместное использование пластиковых труб ставит такой способ под сомнение. В результате использования вставок из пластика возникает разрыв металлической связи системы, что приводит к возникновению блуждающих токов.

Кажется, что проблему можно решить с помощью использования металлопластиковых труб, так как в составе такой трубы имеется алюминиевая пленка. Однако нельзя забывать, что металлопластиковые трубы соединяются в основном с помощью спайки. Чтобы обеспечить герметичность спайки металлопластиковых труб требуется зачистить место соединения от алюминиевой фольги, то есть пропадает та самая металлическая связь.

Новые дома оснащены специальным заземляющим контуром в электрощите. Это значительно упрощает заземление полотенцесушителя. К тому же, использование такого контура является единственно возможным методом обеспечить заземление всех систем с параллельным использованием пластиковых труб.

Заземление полотенцесушителя необходимо:

  • В новом доме с металлопластиковым стояком отопления. Магистральный трубопровод всегда выполняется из металла, поэтому существует большая вероятность, что блуждающие токи по пути к магистрали попадут на ваш полотенцесушитель.
  • После ремонта в старом доме с использованием металлопластиковых труб. В старых домах, как уже было сказано, использовался метод уравнивания потенциалов. Результатом такого ремонта становится нарушение системы заземления, значит требуется обеспечить ее по новой.
  • Подсоединение полотенцесушителя к сети с помощью металлических труб.

Заземление полотенцесушителя необходимо если используется металлопластиковый стояк отопления

В общем и целом, чтобы не ошибиться с необходимостью заземления, лучше просто сделать его вне зависимости от наличия показаний к заземлению. Это сэкономит время и деньги хозяину квартиры, а так же увеличит срок службы не только полотенцесушителя, но и всего металлического оборудования в ванной комнате.

Источник