Меню

Участки трубы переменного сечения



способ изготовления труб переменного сечения из цветных металлов подгруппы титана и сплавов на их основе

Изобретение предназначено для повышения однородности механических свойств толстостенной и тонкостенной частей труб переменного сечения в осевом направлении. Способ включает последовательную деформационную обработку трубной заготовки постоянного по длине поперечного сечения. Минимальная разница степени накопленной деформации по длине трубы обеспечивается за счет того, что сначала проводят деформационную обработку трубной заготовки на части длины, соответствующей тонкостенному участку готовой трубы, с уменьшением наружного диаметра и толщины стенки до промежуточных размеров, после чего осуществляют термическую обработку полученной заготовки переменного сечения по наружному диаметру и толщине стенки, затем проводят редуцирование части заготовки, соответствующей толстостенной части готовой трубы, до промежуточного наружного диаметра с уменьшением или без него толщины стенки и получением промежуточной заготовки преимущественно постоянного наружного диаметра и переменной по длине толщиной стенки, после чего проводят окончательную деформационную обработку до размеров готовой трубы с уменьшением промежуточных размеров наружного диаметра и толщины стенки и формированием переходного участка, а затем — заключительную термообработку. 3 з.п. ф-лы, 5 ил., 1 табл.

Формула изобретения

1. Способ изготовления труб переменного сечения из цветных металлов подгруппы титана и сплавов на их основе, имеющих по длине трубы при постоянном наружном диаметре тонкостенный и толстостенный участки, соединенные переходным участком, включающий последовательную деформационную обработку трубной заготовки постоянного по длине поперечного сечения, отличающийся тем, что сначала проводят деформационную обработку трубной заготовки на части длины, соответствующей тонкостенному участку готовой трубы, с уменьшением наружного диаметра и толщины стенки до промежуточных размеров, после чего осуществляют термическую обработку полученной промежуточной заготовки переменного по длине наружного диаметра и толщины стенки, проводят редуцирование части заготовки, соответствующей толстостенной части готовой трубы, до промежуточного наружного диаметра с уменьшением или без уменьшения толщины стенки и получением промежуточной заготовки преимущественно постоянного по длине наружного диаметра и переменной толщиной стенки, после чего проводят окончательную деформационную обработку до размеров готовой трубы с уменьшением наружного диаметра и толщины стенки и формированием переходного участка, а затем — заключительную термообработку.

2. Способ по п.1, отличающийся тем, что при окончательной деформационной обработке формирование тонкостенного участка трубы и переходного участка проводят на ступенчатой оправке, состоящей, по крайней мере, из двух цилиндрических участков с диаметрами, равными соответствующим внутренним диаметрам готовой трубы, и переходного участка, идентичного по форме переходному участку готовой трубы, а после завершения формирования тонкостенного участка указанную оправку перемещают в осевом направлении подачи трубы.

3. Способ по п.1, отличающийся тем, что внутренний диаметр тонкостенной части промежуточной заготовки преимущественно постоянного наружного диаметра и переменной по длине толщины стенки перед окончательной деформационной обработкой выполняют больше внутреннего диаметра каждого из участков готовой трубы, а внутренний диаметр толстостенной части — больше внутреннего диаметра толстостенного участка и меньше внутреннего диаметра тонкостенного участка готовой трубы.

4. Способ по п.1 или 2, отличающийся тем, что трубу изготавливают из сплава на основе циркония с суммарной массовой долей легирующих элементов Nb, Fe, Sn, O от 1,0 до 3,2%, при этом все термические обработки осуществляют при температуре 450-650°C с выдержкой в течение не менее двух часов для достижения степени рекристаллизации -фазы готового изделия 60-100%.

Описание изобретения к патенту

Изобретение относится к области обработки металлов давлением, в частности к способу изготовления профильных труб переменного сечения в осевом направлении, и может быть использовано, например, при изготовлении труб для направляющих каналов тепловыделяющей сборки ядерного реактора из циркониевых сплавов с малым сечением захвата нейтронов.

Известен способ изготовления цилиндрических труб с постоянным наружным диаметром и разной толщиной стенки прокаткой цилиндрической заготовки постоянного поперечного сечения в осевом направлении на пилигримовом стане путем изменения кольцевой щели между калибрами и оправкой за счет перемещения конусной оправки, устанавливаемой в очаге деформации меньшим диаметром вперед по ходу прокатки (Розов Н.В. Прокатка стальных труб. М.: Металлургия, 1977).

Известен способ изготовления направляющей трубы для топливной сборки ядерного реактора, согласно которому проводят уменьшение толщины стенки на части длины трубы-заготовки постоянного поперечного сечения при сохранении постоянного внутреннего диаметра с последующим редуцированием по наружному диаметру оставшейся части трубы-заготовки с получением трубы постоянного наружного диаметра и переменной толщины стенки (US5,606,583, опубл. 25.02.1997).

Наиболее близким к предлагаемому является способ изготовления труб переменного сечения из циркониевых сплавов для направляющих каналов тепловыделяющей сборки ядерного реактора методом прокатки цилиндрической заготовки постоянного поперечного сечения в осевом направлении на пилигримовом стане с использованием ступенчатой оправки (ЕР0859369В1, опубл. 22.08.2001).

К недостаткам известных способов относится формирование различного уровня механических свойств на частях трубы с различной толщиной стенки вследствие разной степени накопленной деформации при формировании профильной трубы переменного поперечного сечения в осевом направлении из трубы-заготовки постоянного поперечного сечения (табл.1).

Кроме того, к недостаткам известных способов относится невозможность формирования переходного по внутреннему диаметру участка с кривизной образующей заданной функции с воспроизводимыми и с высокой точностью регламентируемыми параметрами. При реализации известных способов формируется отличный от заданного протяженный переходный участок, имеющий криволинейную образующую с недостаточной точностью воспроизводства (фиг.1).

Задачей предлагаемого способа является формирование труб переменного поперечного сечения в осевом направлении из цветных металлов и сплавов подгруппы титана с более однородными механическими свойствами толстостенной и тонкостенной частей.

Поставленная задача решается тем, что в способе изготовления труб переменного сечения, имеющих при постоянном наружном диаметре тонкостенный и толстостенный участки, соединенные переходным участком, включающем последовательную деформационную обработку трубной заготовки постоянного по длине поперечного сечения, сначала проводят деформационную обработку трубной заготовки на части длины, соответствующей тонкостенному участку готовой трубы, с уменьшением наружного диаметра и толщины стенки до промежуточных размеров, после чего осуществляют термообработку полученной заготовки переменного сечения по наружному диаметру и толщине стенки, затем проводят редуцирование части заготовки, соответствующей толстостенной части готовой трубы, до промежуточного наружного диаметра с уменьшением или без него толщины стенки и получением заготовки преимущественно постоянного наружного диаметра и переменной по длине толщиной стенки, после чего проводят окончательную деформационную обработку до размеров готовой трубы с уменьшением промежуточных размеров наружного диаметра и толщины стенки и формированием переходного участка. После окончательной деформационной обработки проводят заключительную термическую обработку.

Для обеспечения воспроизводимых регламентированных параметров переходного участка: заданной длины (менее 100 мм) с кривизной его образующей заданной функции при окончательной деформационной обработке формирование тонкостенного участка трубы и переходного участка проводят на ступенчатой оправке, состоящей, по крайней мере, из двух преимущественно цилиндрических участков с диаметрами, равными соответствующим внутренним диаметрам получаемой трубы, и переходного участка с образующей формы, идентичной форме образующей переходного участка готовой трубы, которую после завершения формирования тонкостенного участка перемещают в осевом направлении подачи трубы.

Внутренний диаметр тонкостенной части промежуточной заготовки преимущественно постоянного наружного диаметра и переменной по длине толщиной стенки перед окончательной деформационной обработкой обеспечивают больше внутреннего диаметра каждой из частей готовой трубы, что необходимо для свободного ввода тонкостенной части заготовки на оправку, а внутренний диаметр толстостенной части заготовки — больше внутреннего диаметра толстостенной части, но меньше внутреннего диаметра тонкостенной части готовой трубы, что необходимо для свободного ввода толстостенной части заготовки на оправку и создания подпора течению металла со стороны переходного участка оправки при формировании переходного участка трубы.

При изготовлении труб для направляющих каналов тепловыделяющей сборки ядерного реактора может быть применен сплав на основе циркония с суммарной массовой долей легирующих элементов Nb, Fe, Sn, O от 1,0 до 3,2%, в таком случае термические обработки осуществляют при температуре 450-650°С в течение от 2 до 7 часов до достижения степени рекристаллизации -фазы готового изделия 60-100%.

Проведение сначала деформационной обработки трубной заготовки на части длины, соответствующей тонкостенному участку трубы, с уменьшением наружного диаметра и толщины стенки до промежуточных размеров, а затем — термообработка полученной заготовки переменного сечения по наружному диаметру и толщине стенки, после которой проводится редуцирование части заготовки, соответствующей толстостенной части трубы, до промежуточного наружного диаметра с уменьшением или без него толщины стенки и получением заготовки преимущественно постоянного наружного диаметра и переменной по длине толщиной стенки обеспечивает отожженное состояние тонкостенной части, а толстостенной части — регламентируемую относительную степень остаточной холодной деформации 30-40%. В результате, после окончательной деформационной обработки до размеров готовой трубы с уменьшением промежуточных размеров наружного диаметра и толщины стенки и формированием переходного участка получаем примерно одинаковую степень накопленной деформации тонкостенной и толстостенной частей сформированной трубы перед заключительной термообработкой, что обеспечивает после заключительной термообработки одинаковую степень рекристаллизации материала тонкостенной и толстостенной частей трубы, а следовательно, и однородность механических свойств.

После завершения деформации тонкостенного участка трубы переходный участок оправки, установленный в очаге деформации обратным направлению смещения металла конусом, создает подпор, препятствующий осевому течению металла, что способствует формированию трубы с переходной зоной, равной по размерам переходной зоне оправки, позволяя получать переходный участок воспроизводимо и с высокой точностью по внутреннему диаметру с кривизной образующей заданной функции (фиг.2) и требуемой длины.

Внутренний диаметр промежуточной заготовки для заключительного формирования трубы в тонкостенной и толстостенной частях должен обеспечивать минимальное редуцирование диаметра для предотвращения образования дефектов на внутренней поверхности и получения требуемого структурного состояния, и вместе с тем достаточный зазор между внутренней поверхностью трубы-заготовки и оправкой для свободного ввода оправки и сохранения смазки.

Данный способ может быть реализован преимущественно на станах пилигримовой прокатки типа ХПТ/ХПТР, а также на машинах радиальной/ротационной ковки.

Изобретение поясняется следующими графическими материалами.

На фиг.1 показана форма образующей переходного участка готовой трубы, изготовленной согласно известным способам, и форма соответствующего участка использованной оправки.

На фиг.2 показана форма образующей переходного участка готовой трубы, изготовленной согласно заявленному способу, и форма соответствующего участка использованной оправки.

На фиг.3 показана заготовка переменного сечения по наружному диаметру и толщине стенки, полученная из трубной заготовки постоянного сечения.

На фиг.4 показана заготовка преимущественно постоянного наружного диаметра и с переменной по длине толщиной стенки.

На фиг.5 показана готовая труба.

Пример реализации заявляемого способа.

В качестве заготовки для формирования трубы переменного поперечного сечения в осевом направлении использовали трубу-заготовку постоянного поперечного сечения с наружным диаметром Do, толщиной стенки So и внутренним диаметром do из сплава циркония с суммарной массовой долей легирующих элементов Nb, Fe, Sn, O от 1,0 до 3,2%, полученную за несколько стадий холодной прокатки.

Проводили прокатку трубной заготовки на участке, составляющем до 0,8 части длины, который соответствует тонкостенному участку готовой трубы, на промежуточный размер с наружным диаметром D 1 , толщиной стенки S 1 порядка 1,3-1,4 мм и промежуточным внутренним диаметром порядка 11,7-11,9 мм (фиг.3). Остальную часть трубной заготовки, соответствующую толстостенному участку готовой трубы, деформации не подвергали. Полученный полуфабрикат, состоящий из деформированной части, соответствующей тонкостенному участку готовой трубы, и части, не подвергавшейся деформации, соответствующей толстостенной части готовой трубы, сопряженных между собой переходным (конусным) участком, подвергали термообработке (рекристаллизационный отжиг) при температуре 600°C с выдержкой в течение 3 часов.

Далее проводили прокатку толстостенного участка трубы с получением заготовки промежуточного размера с постоянным наружным диаметром и переменными толщиной стенки и внутренним диаметром (фиг.4). Полученная заготовка переменного поперечного сечения в осевом направлении имела тонкостенную часть с наружным диаметром Di и толщиной стенки S 1 в рекристаллизованном состоянии, а толстостенную с наружным диаметром D 1 и толщиной стенки S 2 — в холоднодеформированном состоянии. При формировании трубы готового размера использовали ступенчатую оправку, состоявшую из двух преимущественно цилиндрических участков с диаметрами, равными соответствующим внутренним диаметрам готовой трубы, и переходного участка, идентичного по форме переходному участку готовой трубы. Тонкостенный, переходный и толстостенный участки трубы проходили последовательно прокатку на указанной оправке. При этом формирование переходного участка осуществлялось посредством перемещения заготовки вместе с оправкой в осевом направлении подачи.

Готовая труба имела постоянный наружный диаметр D, тонкостенный и толстостенный участки с толщиной стенки S 3 и S 4 соответственно, соединенные переходным участком (фиг.5).

В результате формировали готовую трубу из промежуточной заготовки переменного сечения с различной степенью накопленной деформации на тонкостенной и толстостенной частях конечной трубы, имеющих различную площадь поперечного сечения, и обеспечивали минимальную разницу степени накопленной деформации. Заключительную термообработку проводили в температурном диапазоне 450-650°С с выдержкой в течение 3 часов до достижения степени рекристаллизации -фазы готового изделия 60-100%.

После заключительной термообработки получали большую однородность механических свойств, чем при одностадийном формировании профильной трубы из трубы-заготовки постоянного поперечного сечения в осевом направлении.

Кроме того, заявляемый способ позволил получить переходный участок с воспроизводимой и высокой точностью по внутреннему диаметру с кривизной образующей заданной функции при длине менее 100 мм.

Данный способ может быть применен при изготовлении труб переменного сечения из цветных металлов подгруппы титана и сплавов на их основе.

Источник

Участки трубы переменного сечения

Движение жидкостей или газов представляет собой сложное явление. Для его описания используются различные упрощающие предположения (модели). В простейшей модели жидкость (или даже газ) предполагается несжимаемыми и идеальными (т. е. без внутреннего трения между движущимися слоями). При движении идеальной жидкости не происходит превращения механической энергии во внутреннюю, поэтому выполняется закон сохранения механической энергии. Следствием этого закона для стационарного потока идеальной и несжимаемой жидкости является уравнение Бернулли , сформулированное в 1738 г. Стационарным принято называть такой поток жидкости, в котором не образуются вихри. В стационарном потоке частицы жидкости перемещаются по неизменным во времени траекториям, которые называются линиями тока . Опыт показывает, что стационарные потоки возникают только при достаточно малых скоростях движения жидкости.

Рассмотрим стационарное движение идеальной несжимаемой жидкости по трубе переменного сечения (рис. 1.22.1). Различные части трубы могут находиться на разных высотах.

Классы МПК: B21B17/08 с оправкой, имеющей один или несколько выступов
Автор(ы): Горбушин Владимир Николаевич (RU) , Зубков Александр Петрович (RU) , Ковальчук Владимир Викторович (RU) , Кропачев Сергей Юрьевич (RU) , Сафонов Владимир Николаевич (RU)
Патентообладатель(и): Открытое акционерное общество «Чепецкий механический завод» (ОАО ЧМЗ) (RU)
Приоритеты:
Рисунок 1.22.1.

За промежуток времени жидкость в трубе сечением переместится на , а в трубе сечением – на , где и – скорости частиц жидкости в трубах. Условие несжимаемости записывается в виде:

или .

Здесь – объем жидкости, протекшей через сечения и .

Таким образом, при переходе жидкости с участка трубы с большим сечением на участок с меньшим сечением скорость течения возрастает, т. е. жидкость движется с ускорением. Следовательно, на жидкость действует сила. В горизонтальной трубе эта сила может возникнуть только из-за разности давлений в широком и узком участках трубы. Давление в широком участке трубы должно быть больше чем в узком участке. Если участки трубы расположены на разной высоте, то ускорение жидкости вызывается совместным действием силы тяжести и силы давления. Сила давления – это упругая сила сжатия жидкости. Несжимаемость жидкости означает лишь то, что появление упругих сил происходит при пренебрежимо малом изменении объема любой части жидкости.

Так как жидкость предполагается идеальной, то она течет по трубе без трения. Поэтому к ее течению можно применить закон сохранения механической энергии.

При перемещении жидкости силы давления совершают работу:

.

Работа сил давления равна изменению потенциальной энергии упругой деформации жидкости, взятому с обратным знаком.

Изменения, произошедшие за время в выделенной части жидкости, заключенной между сечениями и в начальный момент времени, при стационарном течении сводятся к перемещению массы жидкости ( – плотность жидкости) из одной части трубы сечением в другую часть сечением (заштрихованные объемы на рис. 1.22.1). Закон сохранения механической энергии для этой массы имеет вид:

,

где и – полные механические энергии массы в поле тяготения:

Отсюда следует:

Это и есть уравнение Бернулли . Из него следует, что сумма

остается неизменной вдоль всей трубы. В частности, для горизонтально расположенной трубы () уравнение Бернулли принимает вид:

Величина – статическое давление в жидкости. Оно может быть измерено с помощью манометра, перемещающегося вместе с жидкостью. Практически давление в разных сечениях трубы измеряется с помощью манометрических трубок, вставленных через боковые стенки в поток жидкости, так чтобы нижние концы трубок были параллельны скоростям частиц жидкости (рис. 1.22.2). Из уравнения Бернулли следует:

Давление в жидкости, текущей по горизонтальной трубе переменного сечения, больше в тех сечениях потока, в которых скорость ее движения меньше, и наоборот, давление меньше в тех сечениях, в которых скорость больше.

Рисунок 1.22.2.

Если сечение потока жидкости достаточно велико, то уравнение Бернулли следует применять к линиям тока , т. е. линиям, вдоль которых перемещаются частицы жидкости при стационарном течении. Например, при истечении идеальной несжимаемой жидкости из отверстия в боковой стенке или дне широкого сосуда линии тока начинаются вблизи свободной поверхности жидкости и проходят через отверстие (рис. 1.22.3).

Рисунок 1.22.3.

Поскольку скорость жидкости вблизи поверхности в широком сосуде пренебрежимо мала, то уравнение Бернулли принимает вид:

где – атмосферное давление, – перепад высоты вдоль линии тока. Таким образом,

Это выражение для скорости истечения называют формулой Торричелли . Скорость истечения идеальной жидкости из отверстия в сосуде такая же, как и при свободном падении тела с высоты без начальной скорости.

В отличие от жидкостей, газы могут сильно изменять свой объем. Расчеты показывают, что сжимаемостью газов можно пренебречь, если наибольшие скорости в потоке малы по сравнению со скоростью звука в этом газе. Таким образом, уравнение Бернулли можно применять к достаточно широкому классу задач аэродинамики.

Одной из таких задач является изучение сил, действующих на крыло самолета. Строгое теоретическое решение этой задачи чрезвычайно сложно, и обычно для исследования сил применяются экспериментальные методы. Уравнение Бернулли позволяет дать лишь качественное объяснение возникновению подъемной силы крыла. На рис. 1.22.4 изображены линии тока воздуха при обтекании крыла самолета. Из-за специального профиля крыла и наличия угла атаки , т. е. угла наклона крыла по отношению к набегающему потоку воздуха, скорость воздушного потока над крылом оказывается больше, чем под крылом. Поэтому на рис. 1.22.4 линии тока над крылом располагаются ближе друг к другу, чем под крылом. Из уравнения Бернулли следует, что давление в нижней части крыла будет больше, чем в верхней; в результате появляется сила действующая на крыло. Вертикальная составляющая этой силы называется подъемной силой. Подъемная сила позволяет скомпенсировать силу тяжести, действующую на самолет, и тем самым она обеспечивает возможность полета тяжелых летательных аппаратов в воздухе. Горизонтальная составляющая представляет собой силу сопротивления среды.

Рисунок 1.22.4.

Теория подъемной силы крыла самолета была создана Н. Е. Жуковским. Он показал, что при обтекании крыла существенную роль играют силы вязкого трения в поверхностном слое. В результате их действия возникает круговое движение ( циркуляция ) воздуха вокруг крыла (зеленые стрелки на рис. 1.22.4). В верхней части крыла скорость циркулирующего воздуха складывается со скоростью набегающего потока, в нижней части эти скорости направлены в противоположные стороны. Это и приводит к возникновению разности давлений и появлению подъемной силы.

Циркуляция воздуха, обусловленная силами вязкого трения, возникает и вокруг вращающегося тела (например, цилиндра). При вращении цилиндр увлекает прилегающие слои воздуха, вызывая его циркуляцию. Если такой цилиндр установить в набегающем потоке воздуха, то возникнет сила бокового давления, аналогичная подъемной силе крыла самолета. Это явление называется эффектом Магнуса . Рис. 1.22.5 иллюстрирует обтекание вращающегося цилиндра набегающим потоком. Эффект Магнуса проявляется, например, при полете закрученного мяча при игре в теннис или футбол.

Рисунок 1.22.5.

Итак, во многих явлениях аэродинамики существенную роль играют силы вязкого трения. Они приводят к возникновению циркулирующих потоков воздуха вокруг крыла самолета или вокруг вращающегося тела, к появлению силы сопротивления среды и т. д. Уравнение Бернулли не учитывает сил трения. Его вывод основан на законе сохранения механической энергии при течении жидкости или газа. Поэтому с помощью уравнения Бернулли нельзя дать исчерпывающего объяснения явлений, в которых проявляются силы трения. В этих случаях можно руководствоваться только качественными соображениями – чем больше скорость, тем меньше давление в потоке газа.

Особенно заметно проявляются силы вязкого трения при течении жидкостей. У некоторых жидкостей вязкость настолько велика, что применение уравнение Бернулли может привести к качественно неверным результатам. Например, при истечении вязкой жидкости через отверстие в стенке сосуда ее скорость может быть в десятки раз меньше рассчитанной по формуле Торричелли. При движении сферического тела в идеальной жидкости оно не должно испытывать лобового сопротивления. Если же такое тело движется в вязкой жидкости, то возникает сила сопротивления, модуль которой пропорционален скорости и радиусу сферы ( закон Стокса )

.

Коэффициент пропорциональности в этой формуле зависит от свойств жидкости.

Поэтому, если тяжелый шарик бросить в высокий сосуд, наполненный вязкой жидкостью (например, глицерином), то через некоторое время скорость шарика достигнет установившегося значения, которое не будет изменяться при дальнейшем движении шарика. При движении с установившейся скоростью силы, действующие на шарик (сила тяжести выталкивающая сила и сила сопротивления среды оказываются скомпенсированными, и их равнодействующая равна нулю.

Источник

Читайте также:  Конденсат в трубе под землей

Все о трубах © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.