Меню

Технология производства для сварных труб



Электросварные стальные трубы: виды и область применения

Первые письменные упоминания о трубопроводах появились на заре цивилизации. В древнем Китае их строили из пустотелых стволов бамбука, для подачи воды с гор в города римляне строили закрытые акведуки, мастера средневековой Европы трубы делали из свинца. Первая труба сварная была изготовлена в середине позапрошлого века и сейчас этим способом производится больше половины трубной продукции.

Область применения сварных труб

Трубопроводы из них работают во всех отраслях промышленности и сельского хозяйства, агрегатах и механизмах, технологическом оборудовании. Без стальных труб был бы недоступен монтаж подземных коммуникаций. Универсальные разновидности используются для перемещения разнообразных газообразных и жидких веществ. По специализированным трубопроводам перекачивается газ, нефть и продукты, получаемые из нее. Кроме этого труба сварная также используется как силовой элемент при строительстве каркасных сооружений (домов, теплиц, навесов и пр.).

В особую разновидность выделены сварные трубы из нержавеющей стали. Уникальность эксплуатационных параметров позволяет им работать на химических, фармацевтических и предприятиях по производству пищевых продуктов. Благодаря презентабельной внешней поверхности сварные трубы из нержавейки встраиваются в дизайн помещений как декоративные элементы.

Материалы для изготовления

Сварной трубопрокат делается из листовой стали толщиной до 5 см или ленты свернутой рулонами. Для изготовления производителями используется углеродистое или низколегированное железо. В зависимости от процентного содержания углерода сталь подразделяется на низко, средне и высокоуглеродистые сорта. Чем его больше, тем прочнее металл. Однако при отрицательных температурах высокоуглеродистая сталь становится хрупкой, что ограничивает область применения.

У низколегированного металла, содержащего не больше 2,5% легирующих добавок, высокая прочность сохраняется в широком диапазоне температур. Это дает возможность снизить вес за счет уменьшения толщины стенок. Такие сварные трубы дороже, чем из простой стали. Однако за счет уменьшенного износа и повышенной стойкости к коррозии увеличивается срок эксплуатации. Поэтому расходы окупаются с лихвой. Сварные трубы из нержавейки делают из холоднокатаной (толщина 0,4 — 5 мм) или горячекатаной (2 — 50 мм) листовой стали.

Виды и особенности сварных труб

Прямошовные виды делаются из свернутого по окружности металлического листа или ленты с последующим свариванием кромок. Линия соединения проходит вдоль оси. Поскольку ширина листов ограничена изделия большого диаметра сваривают из двух полусфер, накладывая швы на обе стороны.

Для производства спиралешовных разновидностей используется длинная стальная лента в рулонах. Линия сварки проходит по внешней поверхности в виде спирали. Этот способ дает возможность производить изделия диаметром до 2,5 м на одном прокатном стане из материала равномерной ширины. По данной технологии делаются сварные трубы с соотношением диаметра и толщины стенки более 100.

Для производства спиралевидного вида не нужно сложного оборудования используемого при производстве трубы прямой прямошовной. Из достоинств отмечается, что спиральная форма шва не позволяет образоваться длинной продольной трещине при разрыве. Однако из-за повышенной длины шва увеличивается расход материалов для сварки.

Способы изготовления

Сварные трубы делаются по трем технологиям:

  1. Печная сварка. Заготовки, называемые штрипсами, нагреваются в туннельной печи до 1300˚ После выхода из нее производится обдув кромок горячим воздухом, повышающим их температуру до 1400˚C с одновременным сдуванием окалины. Затем заготовку обрабатывают на формовочно-сварочном стане, придавая ей нужную форму. После вторичного обдува кромок горячим воздухом их сваривают между собой. Заготовка еще раз проходит через печь, затем шов для улучшения качества обжимается формовочными валиками. Продукция, производимая по этой технологии, классифицируется как горячедеформированная.
  2. Электросварка. Это самый распространенный метод, так как позволяет делать тонкостенные изделия больших диаметров. Швы накладываются сваркой под флюсом. Трубные заготовки из холодных штрипсов получают на прокатном стане методом валковой формовки. Полусферы для прямошовных видов большого диаметра делаются методом прессовой формовки. Спиралешовные заготовки получают на валково-оправочных или втулочных станах. После сварки кромок на поверхности образуется прямолинейный или шов в форме спирали. После его очистки и водяного охлаждения заготовка переносится на калибровочный стан, где проводится корректировка диаметра по всей длине. Затем проверяют качество шва визуально и ультразвуком, после чего проводят гидроиспытания его прочности. Если после еще одного просвечивания ультразвуком дефектов не обнаружено, электросварные трубы отправляются на склад готовой продукции.
  3. Сварка в среде инертного газа. По данной технологии производятся варианты из легированной и нержавеющей стали. При обычной сварке качество шва из-за карбидизации легирующих добавок происходящей при взаимодействии с кислородом воздуха снижается. Для устранения этого явления место сварки защищается аргоном, гелием, углекислым газом. Шов создается путем плавления электрической дугой присадочной проволоки из того же материала что и труба. Сварка ведется неплавящимся электродом из вольфрама. Продукция, создаваемая по этой и предыдущей технологии, относится к холоднодеформируемым.

Параметры сварных труб

Размеры и допуски отклонения нормируются ГОСТ 10704-91. В зависимости от качественных характеристик сварные трубы подразделяются на четыре класса, в каждом из которых указываются:

  • А — механические характеристики;
  • Б — химический состав;
  • В — механические и химические свойства;
  • Г — величина гидравлического давления.

Толщина стенки в зависимости от диаметра:

  • не меньше 2 мм при диаметре до 3 см;
  • от 3 мм при 3 — 7 см;
  • не менее 4 мм, если диаметр 7 — 15,2 см;
  • от 5 мм, когда размер больше 15,2 см.

В зависимости от внешнего диаметра в диапазоне 10 — 620 мм толщина стенки должна быть 2 — 20 мм.

Длина также зависит от диаметра. Для немерной длины она равна:

  • не меньше 2 м при диаметре до 30 мм;
  • от 3 м — 30 — 70 мм;
  • не менее 4 м — 70 — 152 мм;
  • от 5 м при размере свыше 152 мм.

Для сварных стальных труб мерная длина нормируется в пределах:

  • 5 — 9 м, если диаметр 7 см;
  • 6 — 9 м до 21,9 см;
  • 10 — 12 м до 42,6 см;
  • при диаметре больше 42,6 см устанавливается немерная длина.

Для прямошовных труб указано 2 класса точности:

  • 1 — обрезные с удаленными заусенцами, несоответствие по длине не более 15 мм;
  • 2 — без обработки торцов, несовпадение длины до 10 см.

Преимущества и недостатки

Если сравнивается труба электросварная и бесшовная, то у первой при прочих равных параметрах меньше вес и больше пропускная способность. Это обусловлено тем, что у нее стенки в 2 раза тоньше. Соответственно материалов для производства сварных труб тратится меньше, поэтому стоят они дешевле, чем бесшовные. Поскольку для изготовления используются ровные металлические листы, толщина стенки одинакова по всей площади. К достоинствам относится также расширенный ассортимент — сварные трубы выпускаются диаметром 10 — 2520 мм, а бесшовные — 5 — 550 мм.

Из недостатков отмечается снижение прочности по шву. Независимо от применяемой технологии сварное соединение будет слабее основного металла. Из-за шва, который нарушает гладкость внутренней поверхности, у сварных труб повышается коэффициент шероховатости.

Несмотря на недостатки, сварные трубы успешно заменяют бесшовные виды при прокладке магистральных и коммунальных трубопроводов. Поэтому объем их производства увеличивается. По таким же технологиям делают отводы, сгоны, переходы.

Источник

Виды сварных труб, способы производства, преимущества материала

История труб уходит корнями далеко в прошлое, но первое упоминание о стальных трубных изделиях датируется серединой 19 века. Первые стальные трубные изделия изготовляли с помощью сварки. Этим методом производители пользуются и сегодня, изготовляя половину изделий такого типа от общего производства. Стальная сварная труба находит применение в большинстве отраслей промышленности, так как достойная замена изделиям из стали, полученным сварным методом, в настоящее время не найдена.

Назначение современных стальных труб сварного типа

Даже быстро развивающиеся технологии не позволяют представить, что когда-то появится подходящая замена стальным трубам, которые используются при строительстве разных строений и конструкций или проведении коммуникационных сетей.

Сварные трубные изделия современного изготовления могут быть как универсального назначения (доставка различной всевозможной рабочей среды потребителю), а могут иметь узкую специализацию (газопроводы и нефтепроводы).

Прокладку коммуникационных сетей над землей и под землей невозможно представить без стальных трубных изделий разного диаметра. Они входят в состав сложнейших технологических устройств, различных приспособлений и механизмов. Строительные процессы предполагают использование прочных, но легких элементов армирования, в качестве которых используется стальной трубопрокат. К тому же такие изделия могут выступать в качестве основы при строительстве каркасных конструкций.

Также стоит сказать о трубных изделиях сварного типа, для изготовления которых использовалась нержавеющая сталь. Этот материал характеризуется уникальными эксплуатационными свойствами, благодаря которым предоставляется возможность применения труб в пищевой и химической отрасли, энергетике и фармации. Эстетическая привлекательность поверхности труб из «нержавейки» делает их популярными у современных архитекторов в качестве элементов оформления помещений разного типа.

Сырье для производства сварных труб

В качестве исходного сырья для изготовления стальных трубных изделий большая часть производителей использует металл. Это могут быть листы стали толщиной не больше 5 сантиметров, или стальная лента, имеющая различную толщину и свернутая в рулоны. Современная экономика отдает предпочтение трубным изделиям сварного типа, для производства которых использовалась низколегированная или углеродистая сталь. Ее отличительное свойство – содержание углерода в определенном количестве и минимум легирующих веществ. По количеству углерода определяется тип стали: низкоуглеродистая, среднеуглеродистая и высокоуглеродистая.

Читайте также:  Краска для трубопроводов температуры

Углерод в большом количестве, входящий в состав исходного материала, неоднократно повышает прочностные характеристики сварной трубы при нормальном использовании. Однако параллельно снижаются эластичные свойства изделий, и возрастает степень их ломкость в холоде. Следовательно, большое количество углерода делает материал более хрупким при эксплуатации в холоде, что значительно сужает сферу использования готовой продукции.

Сталь, в которой легирующие вещества содержатся в количестве, не превышающем 2,5%, отличается прочностью независимо от эксплуатационных условий. Трубопрокат из такой стали имеет продолжительный срок службы и меньшую массу при одинаковых условиях. Низколегированная сталь для трубных изделий повышает стоимость готовой продукции, и одновременно увеличивает прочностные характеристики, устойчивость к износу и коррозии. Если сравнивать аналогичные качества труб сварного типа из углеродистой стали, то высокая стоимость трубопроката из низколегированной стали не имеет особой важности.

Для изготовления нержавеющих трубных элементов используется аналогичная сталь. Это материал устойчив к коррозии, прост в обработке, с небольшой массой и привлекательной поверхностью. Труба из нержавеющей стали может быть холодного или горячего проката. В первом случае стальные листы имеют толщину от 0,4 до 5 миллиметров, во втором – от 2 миллиметров до 5 сантиметров.

Разновидности сварных трубных изделий

Производство сварных труб с продольным прямым швом осуществляется посредством метода сварки мест соединения стальных листов. Другими словами стальной лист или лента сворачиваются, а их края сваривают друг с другом. Швы таких изделий прямые и располагаются по всей длине. На трубах большого диаметра делают два шва, так как в ширину стальные листы имеют ограничения.

Спиралешовные трубы производятся из рулонной листовой стали (прочитайте также: «Изготовление труб из листового металла – что необходимо, чтобы сделать самостоятельно»). Трубопрокат этого вида имеет одно неоспоримое преимущество – труб могут выпускаться с диаметральным сечением около 2,5 метров с использованием заготовки равной ширины. Трубопрокат, изготовленный по такой технологии, характеризуется отношением диаметра к толщине стенок более 100.

Спиралешовные трубные изделия производятся с применением более простых механизмов, чем трубы с прямым швом. Однако стоит заметить, что процесс изготовления характеризуется высокой точностью. Спиральный шов имеет еще одно весомое преимущество: при аварийной ситуации не образуется продольная магистральная трещина, которая считается самой опасной деформацией трубопровода.

Следовательно, последствия аварии ликвидировать намного проще. Недостатком спирального шва является его увеличенная длина и, как следствие, дополнительные расходы на сварочные материалы.

Способы изготовления

Труба сварная производится несколькими способами, среди которых наибольшее распространение получили: метод печной сварки, электросварной метод и сварка в защитной газовой среде.

Способ печной сварки

Согласно этой технологии стальные заготовки (штрипсы) подвергаются воздействию высоких температур. Полоска металла, выступающая в качестве заготовки, в специальной туннельной печи нагревается до температуры 1300 0 С. Выходящая из печи заготовка подвергается обдуву направленным потоком воздуха, что приводит к нагреванию боковых кромок до 1400 0 С и очищению их от окалин, способствующих ухудшению качества шва.

Полученную горячую заготовку отправляют на формовочно-сварочный стан, в настройках которого заложен определенный диаметр. Здесь будущее изделие принимает нужную форму. Далее выполняется дополнительный воздушный обдув, и кромки стали свариваются при воздействии высокой температуры и определенного давления.

Штрипсу повторно отправляют в печь, где, проходя через формовочные валики, она подвергается обжатию, способствующему повышению качества сварного шва. Технология печной сварки позволяет получать изделия горячего проката.

Метод электросварки

Изготовление сварных труб с использованием электрической сварки считается самым распространенным способом, так как в результате можно получить трубы большого диаметра, имеющие тонкие стенки, хороший шов и поверхность высокого качества. Существует несколько видов электросварки, но производство трубных изделий, предназначенных для магистрального трубопровода, в большинстве случаев осуществляется методом дуговой сварки под флюсом.

По этой технологии производство делится на несколько этапов. Вначале специальные прокатные станы выполняют формовку холодных стальных листов, в результате этого на выходе получаются трубные заготовки. Процесс изготовления прямошовных труб любого диаметрального сечения подразумевает применение валковой формовки. Чтобы изготовить полуцилиндры или круглые заготовки для прямошовных труб, используют прессовую формовку. Сталь для изготовления спиралешовных трубных изделий проходит процедуру формовки в валково-оправочных или втулочных станах.

Дальнейшее изготовление зависит от вида трубы: используя электродуговую сварку, кромки заготовок сваривают с двух сторон, получая в результате продольный прямой или спиралевидный шов. Далее снимается грант со шва, и труба охлаждается водой. Затем ее отправляют в калибровочный стан, где добиваются соответствия диаметра определенным параметрам по всей длине трубного изделия.

После этого труба подвергается визуальному и ультразвуковому контролю качества швов, проходит специальные гидроиспытания, которые позволяют проверить прочность шва под воздействием высокого давления, аналогичное тому, что будет оказываться в эксплуатационный период. Затем проводится еще одна ультразвуковая проверка, и при отсутствии дефектов трубные изделия отправляют потребителю.

Метод сварки в защитных газах

В большинстве случаев такой технологией пользуются при производстве стальных сварных труб из нержавеющей или высоколегированной стали. У таких металлов под действием стандартной сварки наблюдается карбидизация легирующих элементов, в результате чего отмечается значительное ухудшение качества швов. Решить такую проблему помогает сварка стали в защитной газовой среде с использованием аргона, гелия или углекислого газа.

Такая технология позволяет пользоваться достоинствами и газовой, и электрической сварки. Указанные газы имеют больший удельный вес по сравнению с воздухом, поэтому при попадании в рабочую зону сварки выталкивают его. В результате взаимодействие сварочной ванны и атмосферы полностью исключается. Сварка трубных изделий с использованием защиты газом выполняется посредством вольфрамовых электродов.

Полученные швы отличаются высоким качеством, так как становятся одним целым с изделием. Такая технология гарантирует герметичное соединение стальных элементов и высокие прочностные характеристики готовой продукции. Методом электрической сварки или сварки в защитном газе получают стальные трубы холодного проката.

Преимущества сварных труб

Сварка с применением современных технологий позволяет получать швы высокого качества, которые могут сравниваться по прочности с цельнометаллическим изделием. Это позволяет существенно расширить сферу использования такого трубопроката и выполнять монтаж в таких местах, где ранее допускалось применение только бесшовных материалов. Трубные изделия сварные делают производственный процесс более дешевым, благодаря и технологии производства, и незначительным финансовым расходам.

Сварной трубопрокат отличается утонченной стенкой, чем у бесшовных изделий. Это дает возможность выпускать облегченные трубы и сэкономить расход стали. Более легкие трубные изделия упрощают их транспортировку и монтажные работы, для которых необходимо меньшее число единиц техники и занятых людей. Помимо этого готовая листовая сталь имеет одинаковую толщину в любом месте, следовательно, стенки сварных трубных изделий не будут иметь большие погрешности по толщине.

Источник

Конструкции и способы изготовления трубных изделий

Содержание статьи:

Класификация трубных конструкций

Номенклатура трубных конструкций включает прежде всего сами трубы — элемент таких протяженных и сверхпротяженных трубных конструкций, как

  1. трубопроводы (технологические, промысловые, напорные, магистральные и продуктовые проводы);
  2. детали трубопроводов;
  3. трубные узлы;
  4. цилиндрические емкости, сосуды и корпуса агрегатов энергетических установок, различные строительные конструкции.

Основные отличия

Особенность этих изделий ( в отличие от листовых рулонированных цилиндрических конструкций) заключается в том, что их либо полностью изготовляют в заводских условиях, либо укрупняют при помощи дуговой сварки на монтажных площадках из отдельных цилиндрических обечаек-заготовок или труб.

Другое отличие трубных конструкций — сравнительно небольшой наружный диаметр, не превышающий для сосудов и резервуаров 3,5 — 4,0 м, для труб и трубопроводов — 1,6 — 2,5 м ( правда, были построены напорные трубопроводы в Боулдере и Грэнд-Кули (США) из отдельных обечаек диаметром 10 —12 м). Конструкция стальных трубных изделий определяется прежде всего конструкцией оболочки, а также методом ее изготовления.

Оболочка труб может быть получена при помощи горячей прокатки или же формовки из листа с последующей сваркой. Стенку оболочки труб изготовляют монолитной и многослойной. В конструкцию труб в некоторых случаях вводят специальные подкрепляющие элементы — бандажи.

Способы изготовления

  • Холоднокатаные трубы получают прокаткой на станах холодной прокатки или при помощи сочетания процессов холодной прокатки и волочения. При изготовлении холоднотянутых труб используют холодное волочение. Холоднокатаные и холоднотянутые трубы изготовляют диаметром от 10 до 200 мм.
  • Горячекатаные трубы диаметром от 25 до 820 мм изготовляют при помощи различных станов: автоматических, пилигримовых, непрерывных, трехвалковых раскатных и др. Процесс производства труб выполняют следующим образом. На установку поступают заготовки определенной длины, нагретые до температуры 1150—1280° С. На прошивном стане заготовку прошивают в толстостенную гильзу при помощи оправки, надетой на стержень. При изготовлении труб большого диаметра заготовка проходит два прошивных стана.
Читайте также:  Устройство для чистки засоров в трубах

После прошивки заготовку вторично подогревают и раскатывают в трубу на неподвижной оправке, установленной в калибре двухвалкового стана. Для придания трубе круглой формы, уменьшения разностенности и улучшения качества поверхности трубу пропускают через обкатную машину, а затем через калибровочный стан, обеспечивающий получение окончательных размеров трубы по диаметру. Все остальные основные операции, как непосредственно предшествующие операции прокатки (нагрев заготовок, резка, ломка или калибровка заготовки по массе или длине, зацентровка и прошивка заготовки в гильзу или стакан), так и следующие за ней (резка, калибровка, отделка и дефектоскопия готовых труб, а при необходимости и термообработка), — однотипные и всегда выполняются при производстве бесшовных труб независимо от технологической схемы.

Электросварные трубы

Изделия выпускают диаметром 8 — 1620 мм. Их изготовляют двух основных видов:

При изготовлении электросварных труб применяют два принципиально отличных способа сварки: сварку давлением и плавлением.

Сваркой давлением

Этим способом изготовляют трубы диаметром 8 — 600 мм с толщиной стенки 0,5—12 мм из углеродистых и низколегированных сталей. К группе методов сварки давлением, применяемых при производстве труб, относятся:

  1. высокочастотная сварка токами повышенной частоты и радиочастоты;
  2. контактная сварка током частой 50—450 Гц;
  3. током повышенной и высокой частоты, а также выпрямленным током;
  4. стыковая сварка оплавлением и печная (кузнечная) сварка.

Сварка плавлением

Из группы методов сварки плавлением на трубных заводах применяют

  • дуговую сварку под флюсом
  • и механизированную дуговую сварку неплавящимся электродом в среде инертных газов.

Сварку труб диаметром от 426 до 1420 мм (прямошовных и спирально-шовных) выполняют под слоем флюса; тонкостенные трубы диаметром 15—460 мм из высоколегированных сталей с прямым и спиральным швом сваривают в среде защитного газа.

Электросварные прямошовные трубы

Их изготавливают с применением формовки на прессах или же сворачиванием трубной заготовки на пирамидальных вальцах. По первому способу технология изготовления состоит из следующих основных операций:

  • Стальные листы после очистки правят на многовалковой машине и подают на кромкострогальные станки, где обрабатывают кромки листа под сварку.
  • Затем дробеструйной обработкой очищают примыкающие к кромкам поверхности листов от окалины и ржавчины и в валковой машине подгибают кромки листа.
  • Корытообразную заготовку передают на пресс, где ей придается U-образная форма, а затем на другом прессе заготовка приобретает цилиндрическую форму за счет обжатия в двух штампах-полуцилиндрах.
  • Сформированные заготовки поступают на сварочный стан для автоматической сварки продольного шва трубы под слоем флюса.

Сначала сваривают наружный, а затем внутренний слои шва (часто первым сваривают внутренний шов).

Качество сварных швов контролируют автоматическими ультразвуковыми дефектоскопами или рентгеновским просвечиванием на рентгенотелевизионных установках, позволяющих получать изображение сварного шва на экране.

После обрезки концов сварных труб и снятия на концах трубы усиления внутреннего шва на длину 200—300 мм трубы подвергают торцовке и экспандированию. Основные функции экспандирования:

  1. придание трубе круглой формы,
  2. снятие остаточных напряжений и деформаций,
  3. возникающих в процессе сварки,
  4. выравнивание внутренней поверхности (для труб с разной толщиной стенки) и предварительного испытания металла труб при напряжениях выше предела текучести.

Экспандирование проводят в специальной разъемной цилиндрической форме — экспандере — при заполнении полости трубы водой под давлением до 11,7—14,7 МПа, обеспечивающим заданную степень деформации металла трубы (1,2—1,3%). После окончания процесса внутреннее давление снижают до испытательного, а экспандер раскрывают.

В последнее время в отечественной и зарубежной практике все большее применение находит гидромеханическое экспандирование труб, что предопределяет технологическое разделение операций экспандирования и гидроиспытания.

Экспандер состоит из двух устройств, каждое из которых обеспечивает экспандирование (максимум до 1,7%) половины длины трубы. Гидро-механическое экспандирование проводят для труб с толщиной Iстенки до 30 мм, изготовленных из сталей с временным сопротивлением до 650 МПа и более.

Гидравлическое испытание, снятие фаскй на торцах, контроль и маркировка труб — завершающие операции технологического процесса производства труб.

Электросварные спирально-шовные трубы

Трубы большого диаметра могут быть изготовлены также из двух полуцилиндров, соединенных двумя продольными сварными швами.

Электросварные спирально-шовные трубы изготовляют из непрерывной стальной ленты-штрипса при помощи двусторонней автоматической сварки под слоем флюса. Станы для изготовления спирально-шовных труб работают следующим образом. Из разматывающего устройства полоса поступает в правильную машину, а затем на ножницы, где обрезаются начало и конец полосы, чтобы сварить конец предыдущей и начало следующей полосы.

После сварки усиление шва сфрезеровывается заподлицо с основным металлом. Далее полоса поступает в дисковые ножницы, где проводят обрезку кромки полосы до нужной ширины, а затем на строгальном станке обрабатывают кромки полосы под сварку.

Полосу с готовыми кромками подают в формующую машину, принцип работы который основан на проталкивании полосы через лабиринт или через улитку, из которых полоса выходит в виде завитой в спираль трубной заготовки (все чаще формовку ведут в валково-роликовых устройствах). Сразу за формовочной машиной установлены сварочные головки для сварки спирального шва изнутри и снаружи. Обе головки закреплены неподвижно и выполняют автоматическую сварку под слоем флюса. Готовую трубу разрезают на отрезки мерной длины, которые подвергают испытанию и отделке, как и при изготовлении прямошовных труб.

Индукционная сварка

При изготовлении спирально-шовных труб находят применение и другие способы сварки. Начинают применять индукционную сварку токами высокой частоты, тонкостенные трубы сваривают в среде защитных газов. В ряде случаев спирально-шов- ные трубы диаметром 820—1220 мм проходят термическую обработку, благодаря чему нормативное временное сопротивление металла труб повышается с 520—550 МПа до 800 МПа.

С помощью всех рассмотренных методов получают монолитную однослойную конструкцию оболочки трубы. Тем не менее отечественной практикой накоплен достаточный опыт по производству труб повышенной слойности. Изготовляют двухслойные спирально-шовные трубы больших диаметров с толщиной стенки до 28 — 32 мм из рулонной стали. Процесс заключается в совместной формовке и сварке двух наложенных со смещением друг на друга полос. Таким образом, сварка внутреннего слоя изнутри и верхнего слоя снаружи выполняется аналогично методу односторонней сварки на подкладных кольцах. Смещение спиральных сварных швов внутреннего и наружного слоев трубы составляет примерно 100 мм (рис. 1). Торцы труб либо замоноличиваются сваркой, либо к концам труб привариваются монолитные патрубки длиной 500 — 600 мм (рис. 1, а).

Двуслойные спирально-шовные трубы могут быть изготовлены и другим способом. Нижний слой формуют как оболочку электросварной спирально-шовной трубы.

Рис. 1. Конструкция двухслойных спирально-шовных труб, изготовленных с использованием: а — совместной формовки и автоматической сварки; б — последовательной формовки слоев и их сварки

Верхний также выполняют спирально-шовным, но направление ’’навивки” противоположное (рис. 1,6). Данная технология приводит к обра-зованию больших межслойных зазоров. Концы труб также замоноличиваются.

Слои трубных конструкций

Многослойные трубы изготовляют из низколегированных рулонных сталей толщиной 4 — 6 мм. Конструкция оболочки (рис. 2) представляет собой в сечении плоскую спираль Архимеда и состоит из витых обечаек, шириной 1700 мм, соединенных друг с другом кольцевыми сварными швами. Концевые участки многослойных труб выполняются монолитными. Продольные внутренние и наружные нахлесточные швы проваривариваются автоматической дуговой сваркой на глубину, соответствующую примерно толщине двух слоев оболочки. Межслойный зазор не превышает 0,5 мм.

Слойная конструкция стенки труб повышает несущую способность на 10 — 15 % (по сравнению с монолитными трубами), что объясняется более равномерным распределением внутренних напряжений в слоях (более активному вовлечению в работу наружных слоев оболочки). Многослойные трубные ; конструкции обладают еще и повышенной стойкостью против хрупких разрушений.

Фактор, снижающий практическую ценность применения труб повышенной слойности, — недостаточно высокая продольная и поперечная устойчивость при толщине слоев менее 4 — 5 мм (в отсутствии внутреннего давления).

Как пример плотного контакта между слоями, представляет интерес конструкция многослойной трубы, разработанная французским обществом BVS — предприятие фирмы CREOSOT- LOIRE (Гренобль). Многослойная оболочка составляется из двух или более труб, зачастую изготовленных из разных марок сталей. После сборки корпуса типа ’’труба в трубе” внутреннюю обечайку растягивают гидравлическим прессом (или механическим экспандером) при нагрузках выше ат вплоть до контакта с внешней трубой, напряжения в которой не превышают предела текучести. Иногда применяют горячую сборку корпуса (нагрев до температуры 500° С), заключающуюся в насаживании внешней горячей трубы на внутреннюю холодную. Такие трубы называют скрепленными.

Эффект подкрепления можно получить при автофретаже или при автоскреплении. Трубу подвергают экспандированию, но так, чтобы напряжения в верхнем слое не превышали предела текучести.

Совмещенные трубы

В отечественном прессовом производстве находят применение совмещенные трубы, которые отличаются как от скрепленных, так и многослойных. Эти трубы состоят из нескольких уложенных друг в друге цилиндров, но между соседними стенками имеется зазор, в который под давлением подается жидкость или газ, что дает возможность регулировать несущую способность .

В Австрии и Швейцарии были предложены совмещенные трубы с двумя стенками, пространство между которыми заполняется массой, в том числе самотвердеющей, передающей нагрузку от внутренней трубы к наружной, которые запатентованы во многих странах.

Нерациональное использование металла в однослойных трубных конструкциях, работающих под внутренним давлением, привело к разработке технологии бандажирования — усиления труб с помощью равномерно расположенных снаружи стяжных катаных колец, намотки гибких бандажей в виде стальных канатов или стальной ленты и опрессовки внутренней трубы для обжатия оболочки. Кольца имеют временное сопротивление 900—1250 МПа, стальная лента и проволока 1000 — 1600 МПа.

Подкрепление цилиндрических оболочек бандажами получило широкое распространение прежде всего во Франции. На строительстве напорных трубопроводов иногда применяют автобандажированные трубы с волнистой оболочкой. Их недостаток — большее гидравлическое- сопротивление при перекачке продукта.

Читайте также:  Заморозка труб в нижнем новгороде

Фасонные части

В трубопроводах помимо прямых или изогнутых в соответствиии с рельефом местности труб применяют фасонные части или соединительные детали (рис. 3). Для изменения направления транспортируемого продукта служат отводы, для разделения потока —тройники, для его остановки — заглушки, для перехода от одного диаметра трубопровода к другому или для соединения между собой труб, имеющих большую разницу по толщине, применяют переходы, для присоединения некоторых деталей к трубопроводам иногда используют фланцы.

Соединительные детали трубопроводов могут быть штампованными, сварными или штампосварными. Применяют следующие конструкции соединительных деталей: тройники горячей штамповки ( бесшовные с вытянутой горловиной, с одним или двумя швами по телу тройника), тройники штампосварные с приваренными ответвлениями горячей штамповки; тройники, усиленные накладками, и тройники без усиливающих элементов (все перечисленные типы тройников могут быть равно- и неравнопроходными); переходы конические, концентрические штампованные или штампосварные; отводы гнутые гладкие, изготовленные из труб путем протяжки в горячем состоянии или штампосварные из двух половин; отводы сварные секторные; заглушки эллиптические.

В энергетических установках и химическом машиностроении наиболее ответственные детали конструкции — корпус и днища агрегатов и сосудов. В зависимости от диаметра и толщины стенки корпуса его изготовляют из бесшовных кованых или сварных цилиндрических обечаек.

Как правило, конструкции энергетической и химической промышленности включают в свой состав большое количество элементов трубопроводов различных протяженности и назначенин.

Днища применяются эллиптической или шаровой формы, при этом отношение высоты выпуклой части днища, измеренной от внутренней поверхности, к внутреннему диаметру должно быть равно или больше 0,25.

Большое распространение имеют торовые воротники — детали для присоединения штуцеров и трубопроводов к корпусам агрегатов и сосудов (рис. 4). Торовые воротники изготовляют штамповкой и вваривают в цилиндрический корпус встык;

Рис. 3. Типы соединительных деталей

штуцер или трубный узел приваривают к горловине воротника также встык. Рассмотрим схематически способы изготовления перечисленных деталей и трубных узлов.

Оптимальным методом изготовления тройников можно считать штамповку. Штампованные тройники с вытянутой горловиной более надежны в работе и технологичны в изготовлении. Близки к ним по работоспособности штампосварные тройники с вытянутой горловиной и одним или двумя продольными швами, которые обычно изготовляют из сварных труб. Для увеличения длины патрубка к горловине кольцевым швом можно приварить трубу. Этот шов можно выполнять как в поворотном, так и в неповоротном положении. При сварке трубопроводов малых диаметров и при отношениях диаметров основного трубопровода и ответвления 0,3 и менее, при давлениях до

2,5 МПа применяют простые врезки без укрепляющих элементов. В этом случае сваривают только один шов, соединяющий тело трубы с горловиной (ответвлением), и его, как правило, выполняют ручной дуговой сваркой. В трубопроводах более высокого давления применяют тройник с усиливающими элементами в виде воротников. В этом случае само тело тройника изготовляют с одним или двумя сварными швами, при помощи автоматической сварки. Шов между патрубком (ответвлением) и тройником, а также швы, соединяющие воротник с тройником и патрубком, выполняют ручной сваркой электродами, или полуавтоматической сваркой в среде углекислого газа, или порошковой проволокой .

Переходы, как правило, изготовляют из бесшовных труб штамповкой: холодной штамповкой обжимом, холодной штамповкой раздачей, комбинированным способом (раздачей с обжимом) , горячей подкаткой конца трубы на меньший диаметр. Штампосварные переходы имеют один или два продольных сварных шва, которые сваривают после формовки автоматической или ручной дуговой сваркой. Переходы можно изготовить из труб сваркой. Для этого из трубы вырезают треугольные клинья равномерно по периметру, образовавшиеся лепестки подгоняют таким образом, чтобы сошлись их кромки, которые сваривают между собой. Их используют лишь в случае отсутствия штампованных переходов.

Гнутые отводы изготовляют из бедшовных и сварных труб на трубогибочных станках в холодном состоянии или при нагреве токами высокой частоты. Крутоизогнутые отводы зигот

Рис. 5. Схема расположения сварных швов составных штампованных днищ

сваривать между собой кольцевым швом даже в том случае, если они не имеют прямого участка на конце. Крутоизогнутые бесшовные отводы Или отводы с одним сварным швом могут быть изготовлены горячей штамповкой из труоы с косообре- занными торцами. Штампосварные отводы получают штамповкой из листовой стали двух скорлуп-полу отводов, которые затем собирают и сваривают встык двумя продольными швами, расположенными на наружной и внутренней образующей радиуса изгиба отвода. Отводы широко применяют на трубопроводах, а также для труб поверхностей нагрева в котлах. Секционные сварные отводы изготовляют из бесшовных и электросвар- ных труб сваркой отдельных трубных элементов с косыми торцами. В связи со сложностью соорки и сварки косых стыков их запрещается изготовлять в монтажных условиях. Удобны эти отводы тем, что из отдельных элементов можно сварить кривую с любым углом.

Эллиптические и сферические заглушки делают из листовой стали холодной или горячей штамповкой.

Днища цилиндрических сосудов, котлов и аппаратов изготовляют горячей и холодной штамповкой. При толщине днища до 30 мм заготовка может быть сварена из нескольких листов, при этом сварные швы располагаются по хорде на расстоянии от центра не более 0,2 диаметра днища (рис. 5). Иногда днище сваривают из центрального круга и предварительно отштампованных лепестков с расположением швов по круговому и меридиональному сечениям. Сварку швов выполняют обязательно с двух сторон. Штамповку днища для придания ему сферической или эллиптической формы выполняют при нагреве до 850-

Днища могут быть также шаровыми или коническими. В шаровых днищах расположение швов может быть таким же, как показано на рис. 5 для сферических днищ. В конических днищах продольный замыкающий шов расположен по образующей конуса, кольцевые швы — параллельно основанию конуса. Если коническое днище изготовляют из сварных заготовок, то сварные швы заготовки допускается располагать произвольно.

Сосуды с внутренним радиусом или наибольшей стороной не более 500 мм могут иметь плоские приварные днища.

Соединительные детали трубопроводов изготовляют, в основном, из сталей тех же марок, какие применяют при строительстве трубопроводов, при изготовлении котлов и сосудов, работающих под давлением.

Рис. 6. Схемы трубных узлов: а — деталей трубопроводов; б — строительных конструкций

На рис. 6, а показаны наиболее распространенные сочетания деталей (деталь—труба, деталь—деталь и др.), применяемые в трубопроводном строительстве.

Плоские фланцы, применяемые для трубопроводов, рабо-тающих при давлении до 2,5 МПа, приваривают к трубам, как показано на рис. 6, а. При более высоких рабочих давлениях используют фланцы с выступом и впадиной, привариваемые к трубам встык (см. рис. 6, а).

Строительные трубные конструкции отличаются большим многообразием. Из труб изготовляют колонны, служащие опорой зданий, монтируемых над землей, длиннопролетные конструкции типа пешеходных мостов и переходов^ стрел кранов, радиомачт и др. Трубные фермы применяются при сооружении длиннопролетных крыш, радиотелескопов, лыжных трамплинов, парковых аттракционов и т.д.

В общем виде соединение элементов трубной конструкции можно представить, как показано на рис. 6, б, где в узел сходятся 16 трубных элементов, расположенных в трех ортогональных плоскостях. Бинарный код, предложенный для класси- ; фикации такой конструкции, позволяет схематически обозначить любую из конструкций от самой сложной до самой простой. Наличие элемента обозначается единицей, его отсутствие — нулем. По типу соединения элементов в трубной конструкции различают Т-, У-, К- и Х-образные соединения. Простейшая схема соединения между собой трубных элементов предусматривает приварку ответвления к наружной поверхности главного элемента.

При этом отношение диаметра к толщине стенки главного элемента обычно не превышает 15—20, а ответ-вление имеет толщину стенки, равную 0,5—0,6 от толщины стенки главного элемента. В том случае, если трубы имеют больший диаметр, зону соединения усиливают, используя короткие отрезки более толстостенных труб . При сварке трубных конструкций применяют, в основном, три типа сварных соединений: стыковые с разделкой кромок и с полным проплавлением; стыковые с разделкой кромок и частичным проплавлением; угловые соединения. Если существует доступ к сварному стыку с двух сторон, то используют двустороннюю сварку, если доступа для подварки нет, сварку выполняют с одной стороны как на подкладках, так и без них.

Источник