Технология по задувке кабеля в трубы
В настоящее время в России широкое распространение получил способ прокладки кабелей связи (в том числе оптических) в защитных пластмассовых трубах. Прокладка кабелей связи в трубах является альтернативой прокладке бронированных кабелей и на сегодняшний день является наиболее передовой технологией, позволяющей защитить кабель от грызунов, повреждений техникой и других внешних воздействий.
При прокладке кабелей в защитные пластмассовые трубы преимущественно используются две технологии:
- Затяжка тросом.
- Задувка воздухом.
Затяжки кабеля тросом имеет следующие преимущества:
- Применяется дешевое оборудование.
- Простая технология.
Но при этом обнаруживаются следующие недостатки:
- Возрастает риск повреждения кабеля.
- Небольшие длины прокладки. До 500 метров.
- Трудоемкость прокладки при больших длинах.
- Чувствительность к изгибам трассы.
Преодолеть недостатки прокладки кабеля в защитные пластмассовые трубы методом протяжки позволяет технология задувки кабеля воздухом (пневмопрокладка). Преимущества данной технологии:
- Нет риска повреждения кабеля.
- Большая длина задувки . Средняя длина задувки – 2 км .
- Большая скорость прокладки кабеля.
В рамках применения данной технологии используются пластмассовые трубы с твердой смазкой внутренней поверхности (малый коэффициент трения между поверхностью трубы и кабеля
Источник
Технология задувки кабеля в защитные пластмассовые трубы
В настоящее время в России широкое распространение получил способ прокладки кабелей связи (в том числе оптических) в защитных пластмассовых трубах. Прокладка кабелей связи в трубах является альтернативой прокладке бронированных кабелей и на сегодняшний день является наиболее передовой технологией, позволяющей защитить кабель от грызунов, повреждений техникой и других внешних воздействий.
При прокладке кабелей в защитные пластмассовые трубы преимущественно используются две технологии:
- Затяжка тросом.
- Задувка воздухом.
Затяжки кабеля тросом имеет следующие преимущества:
- Применяется дешевое оборудование.
- Простая технология.
Но при этом обнаруживаются следующие недостатки:
- Возрастает риск повреждения кабеля.
- Небольшие длины прокладки. До 500 метров.
- Трудоемкость прокладки при больших длинах.
- Чувствительность к изгибам трассы.
Преодолеть недостатки прокладки кабеля в защитные пластмассовые трубы методом протяжки позволяет технология задувки кабеля воздухом (пневмопрокладка). Преимущества данной технологии:
- Нет риска повреждения кабеля.
- Большая длина задувки . Средняя длина задувки – 2 км .
- Большая скорость прокладки кабеля.
В рамках применения данной технологии используются пластмассовые трубы с твердой смазкой внутренней поверхности (малый коэффициент трения между поверхностью трубы и кабеля
Комплексная система для задувки кабеля состоит из следующих элементов:
- Машина для задувки кабеля
- Компрессор
- Корзина для укладки кабеля
Машина для задувки состоит из системы приема-подачи сжатого воздуха в трубу совмещенного с устройством для протягивания кабеля (кабелепротяжный механизм). Современные конструкции машин обеспечиваю задувку кабеля диаметром от 6 до 32 мм со скоростью вплоть до 100 м/мин. В качестве кабелепротяжного механизма предпочтительно использование устройства на гидравлическом приводе. Такой механизм обеспечивает высокую скорость подачи кабеля и автоматическую остановку работы при блокировании кабеля в трубе. Обязательным атрибутом современных машин является наличие встроенной электронной или механической измерительной системы позволяющей выводить данные о скорости, расстоянии задувки и информацию о наличии каких-либо закупорок внутри трубы.
При подборе компрессора для подачи воздуха следует исходить из из диаметра используемого кабеля и трубы. Как показала практика, оптимальным вариантом является компрессор с рабочим давлением не менее 12 бар и производительностью не менее 10 кубических метров в минуту. Это позволяет относительно комфортно задувать кабель на большие расстояния в трубы диаметром до 40 мм (наиболее распространенный вариант в России).
При использовании труб диаметром 50 или 63 мм потребуется использования компрессора с лучшими характеристиками. Использование более производительного компрессора позволяет легче и быстрее преодолевать кабелю сложные участки трасы .
Корзины для укладки предназначены для временного хранения и перемотки задуваемого кабеля. Такая необходимость возникает при невозможности задувки всей строительной длины используемого кабеля. В данном случае первоначально кабель задувается в одну сторону трассы. Остаток на барабане перематывается и укладывается в корзину. Затем идет задувка оставшейся длины кабеля с корзины в другую сторону трассы.
Повысить дальность и скорость задувки кабеля помогает использование специально смазки снижающей коэффициент трения между поверхностью трубопровода и оболочки кабеля.
Источник
Правила и особенности прокладки электрических кабелей в трубах
Проводник, по которому проходит электрический ток, может представлять опасность для людей и построек, поэтому к их монтажу следует относиться со всей ответственностью. Существующие инструкции предписывают различные способы прокладки, в том числе и монтаж электропроводки в трубах. О технологии таких работ и пойдет речь.
Для чего провода прокладывают в трубах
Согласно ПУЭ 2.2.20 (Правила устройства электроустановок) токопроводы, подверженные механическому воздействию, должны быть дополнительно защищены. Кроме того, прокладка в трубе даёт следующую защиту:
- от растяжения, сдавливания, излома, прокола;
- предохраняет горючее основание или пожароопасное помещение от возгорания при КЗ (короткое замыкание);
- не позволяет солнечным лучам и атмосферным осадкам разрушать изоляцию.
Такой способ применяется в основном в промышленных помещениях и при прокладке в почве, земле.
Преимущество этого варианта
При существовании разных способов монтажа в чём плюсы данного метода? Поскольку труба имеет круглую форму, она идеально подходит для прокладки в ней провода или кабеля. При проталкивании проводника он реже изгибается, благодаря чему требуется меньше усилий. Такие конструкции имеют плавный поворот, в отличие от короба, что также способствует монтажу и предохраняет провод от излома.
Круглое сечение выдерживает большую нагрузку, чем какой-либо другой. Проложенные под землей таким образом кабели будут более защищены от сдавливающих нагрузок и при деформации поверхности, например, во время просадки здания.
Какие кабели разрешается использовать
Для проводов и кабелей особых требования не предъявляется. Согласно 2. 3. 42. ПУЭ допустимо прокладка кабельных линий в резиновой и пластмассовой изоляции без дополнительной защиты, поскольку трубы выполняют эту функцию. Количество оболочек также не регламентируется. Жилы могут быть медными или алюминиевыми. Каждый проводник может состоять из одной или несколько жил.
При обслуживании четырёхпроводной сети прокладываемый кабель должен быть четырехжильным (п. 2. 3. 52). Это относится к ПНД-трубам (полиэтилен низкого давления), если используется стальная, а напряжение до 1 кВ, то согласно 1. 7. 121. труба может играть роль нулевого проводника. Это при условии, что она на всём протяжении трассы электрически не имеет разрыва.
Запрещено располагать рядом (п. 2. 1. 16.):
- рабочую и резервную сеть;
- рабочую и аварийную линию;
- цепи до и выше 42 В.
к содержанию ↑
Характеристики труб для прокладки кабелей в почве
Для создания кабельных блоков (2. 3. 102.) разрешается использовать трубы:
- металлические (чугунные, стальные);
- асбестоцементные;
- бетонные;
- керамические;
- прочие.
Под прочими подразумеваются, в том числе, и пластиковые. Выбор материала зависит от уровня грунтовых вод, наличия агрессивной среды и блуждающих токов. При прокладке маслонаполненных однофазных кабелей трубы должны быть выполнены из немагнитного материала, причем в каждой из них прокладывается один кабель.
Сами трубы могут быть как жесткими, так и гибкими. В качестве гибких используется гофрированная полиэтиленовая или металлорукав. Каталог ДКС (диэлектрическая кабельная система) предоставляет большой выбор ассортимента.
Гофрированные трубы
Благодаря своей лёгкости и гибкости такие виды широко используются для прокладки в земле. Выпускаются в двух вариантах:
Первые виды более прочные благодаря стальной проволоке, вмонтированной при изготовлении. Особенно удобна для монтажа двустенная труба. Внешний слой выполнен в виде гофры из ПНД, который обладает высокой прочностью. Внутренний –изготавливается из ПВД (полиэтилен высокого давления) и образует гладкую поверхность, это способствует более удобному протаскиванию кабеля.
ПНД легко переносит ультрафиолетовое излучение, не подвергается коррозии, всё это делает их применимыми для прокладки наружной (уличной) проводки. Некоторые виды снабжаются зондом – шнуром, протянутым через всю длину трубы. Это значительно убыстряет процесс монтажа.
Металлические трубы
Металл намного прочнее пластика, поэтому такие трубы прокладываются там, где особенно важна механическая прочность. Стальные трубы укладываются при пересечении:
- трамвайных и железнодорожных путей;
- автомобильных дорог;
- въездов в гараж или ограду;
- газо- и нефтепроводов;
- теплотрассы.
Также идет металл, если трасса проходит вдоль железнодорожных или трамвайных путей, а также внутри помещений, в том числе и в деревянных домах. Металлические трубы применяются для открытой и скрытой прокладок. В электротехнических помещениях вместо труб допустимо использование уголка и швеллера. Широко используются и для наружной установки (открытой, скрытой, под навесом).
Пластиковые трубы
Такой вид находит всё больше применение при прокладке кабеля или провода. Связано это с характеристиками:
- в отличие от металлических, пластиковые трубы не подвержены коррозии, благодаря чему срок службы увеличивается до 50 лет;
- являясь диэлектриком, дополнительно защищает кабель;
- не требуют заземления;
- стойки к химическим веществам и растворителям;
- ПНД может эксплуатироваться при температуре до -45 градусов.
Следует обратить особое внимание на сравнительно новый материал из сшитого пенополиэтилена (полиэтилена). В отличие от полиэтилена, сшитый полимер имеет ряд преимуществ:
- размягчение материала наступает при температуре +150 градусов, а плавится при +200 градусов;
- обладает большей жесткостью и прочностью на разрыв;
- имеет высокую пароизоляцию;
- способен восстанавливать форму при кратковременной деформации.
Сшитый полиэтилен используется для изоляции высоковольтных кабелей и труб, а наличие фурнитуры позволяет прокладывать трассы любой конфигурации.
Технология закладки кабеля в металлические трубы: процесс монтажа
Монтаж кабеля в трубы довольно трудоемкий и дорогостоящий, поэтому применяется, когда необходимо гарантированно защитить кабель от механического воздействия. Выполняется закладка в несколько этапов:
- разметка предстоящей трассы;
- подготовка и установка труб;
- прокладка кабеля.
Для выполнения первого пункта определяется место прокладки, и проводятся подготовительные работы. При монтаже на стенах зданий, в фундаменте, перегородках делаются штробы, отверстия под электроприборы, переходы и т. д. Производятся замеры длины и изгибов, составляется необходимая документация и передается в электромонтажную мастерскую. Там трубы очищают, окрашивают, разрезают по размеру. Стыки обязательно обрабатывают, чтобы не было заусенец. При необходимости делают изгибы. Готовые изделия маркируют, упаковывают и отправляют заказчику.
Установку производят таким образом, чтобы исключить попадание внутрь пыли, масла и других веществ. Чтобы не скапливалась вода, прокладку делают под наклоном не менее 2 градусов по направлению к коробам. Крепление производить с помощью сварки запрещено, для этого нужно использовать скобы, хомуты, накладки, прижимы. Расстояние между креплениями должно быть не больше указанного в таблице.
Наружный диаметр труб, мм | Расстояние между креплениями, м |
---|---|
18-26 | 2,5 |
30-42 | 3,0 |
45-90 | 4,0 |
Все соединения и вводы должны быть уплотнены. После чего выполняется установка электрооборудования.
На завершающем этапе производится затяжка. Проверяют чистоту труб, при необходимости они продуваются сжатым воздухом, на торцы надеваются пластмассовые втулки. Провода и кабели собираются группами, жилы привязываются к стальной проволоке диаметром 2-5 мм и протягиваются.
Обустройство траншеи
Сначала производится разметка местности, будущая трасса должна быть удалена от фундамента, газопровода и т. д. на расстояние, указанное в ПУЭ. Затем очищают землю от растений и мусора. Землеройной техникой производят рытье траншеи, там, где это невозможно, выкапывают вручную. Глубина определяется рабочим напряжением. Дно очищают при необходимости от мусора, выравнивают и выстилают песчаной подушкой. Поверх трассы обязательно укладывается сигнальная лента.
Бестраншейный способ укладки кабеля в земле
Это сложный и дорогой способ, осуществляется специализированной техникой. Производится в местах, где невозможно выкопать траншею в силу каких-либо обстоятельств, например, прокладка под водоемом. Суть заключается в том, что производится горизонтальное бурение с помощью регулируемой буровой головки. Затем канал расширяется, протягивается ПНД-труба, в которой находится стальной трос, а через нее с помощью троса уже прокладывается кабель.
Прокладка кабеля под дорогой
В случае когда трасса должна пройти через асфальтированную дорогу, чтобы не нарушить ее покров, используют другой метод прохода – прокол. Штангу с наконечником с помощью техники проталкивают через грунт под дорогой. Наконечник, проходя через толщу, уплотняет вокруг себя землю, не давая ей осыпаться. Такой проход называют стартовым. После того как штанга вышла на поверхность, к ней крепят расширитель и вытягивают в обратном направлении. Проход расширяется, а земля вокруг ещё больше утрамбовывается. Через него протягивают кабельную линию.
Требования безопасности при организации проводки в трубах
При работах с кабельными канализациями применяют ПТБ (правила технической безопасности). В них оговариваются допуски и требования для монтажной бригады.
Прокладывание кабеля и проводов в трубах – ответственная работа. В ней могут принимать участие только лица, специально прошедшие подготовку. Нарушение требований может повлечь за собой печальные последствия.
Источник
Задувка оптического кабеля: технология пневматической прокладка ВОЛС, особенности, применение
СОДЕРЖАНИЕ:
В силу своих известных преимуществ волоконно-оптические линии связи заняли господствующее положение на всех областях современных телекоммуникаций: они используются для организации как меж- и трансконтинентальных, так и внутриобъектовых линий. Превосходя, порою значимо, иные кабельные технологии реализации физического уровня по ряду ключевых технических параметров, в первую очередь по дальности действия и широкополосности, они, тем не менее, унаследовали от своих предшественников также часть проблем, которые неизбежно возникают в процессе построения и последующей эксплуатации любой линии связи.
Одна из задач, решение или по крайней мере смягчение остроты наличия которой сулит немалые выгоды финансового, временного и организационного плана, – сложность выполнения именно строительных работ в процессе прокладки кабеля, что значимо отражается на их стоимости, см. рис 1. Если при реализации линий междугородной и зоновой связи с подобного рода положением дел можно смириться просто в силу немногочисленности таких объектов, то в районах городской и даже сельской застройки необходимо всемерно стремиться к их сокращению.
Изменение приоритетов касательно сетей связи на урбанизированной территории связано со значительно меньшим сроком службы, высокой частотой изменения конфигурации линейной части сети, необходимостью получения многочисленных согласований и большой плотностью подземных сооружений (водопровод, канализация, силовые линии и др.).
Рис. 1. Типовая структура укрупненных статей затрат на создание линейной части системы волоконно-оптической связи
Аналогичные проблемы, только в несколько иной форме, проявляются в процессе текущей эксплуатации информационных систем на объектах недвижимости различного назначения. В данном случае прокладка новых и перекладка имеющихся кабельных линий крайне нежелательна из-за того, что сопутствующие им процедуры полностью и на длительный срок дезорганизует работу тех структурных подразделений, в помещениях которых выполняются монтажные работы.
Радикальный подход к решению этой проблемы на основе разовой прокладки всех линий, требуемых как на данный конкретный момент, так и в обозримой перспективе, очевидным образом не выгоден из-за необходимости немедленного привлечения для этого больших финансовых ресурсов.
Идея, основные свойства и области применения технологии задувки оптического кабеля (ВОЛС)
Рис. 2. Относительная доля стоимости волоконных световодов в конструкции оптического кабеля
Известно, что любой кабель представляет собой одну или несколько цепей передачи информационных сигналов (волоконных световодов, витых пар, коаксиальных трубок) и компонентов, которые обеспечивают их нормальную работоспособность на протяжении всего нормативного срока службы, в т.ч. под воздействием неблагоприятных факторов окружающей среды. Для волоконно-оптического кабеля затраты на защитные компоненты при небольшом количестве волокон составляют значительную долю. По мере увеличения количества световодов относительная величина этой составляющей довольно быстро падает, см. рис.2. Такое положение дел представляет собой прямое следствие прекрасных массогабаритных показателей оптических волокон, что позволяет не менять конструкцию и размеры кабеля в диапазоне изменения их количества по меньшей мере от 4 до 96.
Идея, положенная в основу технологии пневматической прокладки оптоволокна, базируется на физическом разделении цепей передачи информации (в нашем случае отдельные волокна и их пары) и трубчатых защитных покрытий, что позволяет прокладывать их независимо друг от друга. Подобное разделение с технической точки зрения выгодно тем, что позволяет:
- в данный конкретный момент времени формировать линейную часть системы связи ровно из того количества оптических волокон, которые необходимы для удовлетворения актуальных потребностей клиентов;
- заменять один тип волокна на другой при возникновении такой необходимости без проведения чисто строительных работ.
Особенности реализации рассматриваемой технологии дают ей также ряд эксплуатационных преимуществ:
- организация ответвления в процессе текущей эксплуатации осуществляется врезкой муфты без разрыва имеющихся цепей передачи;
- сам процесс прокладки ВОЛС до клиента не требует применения сложного технологического оборудования.
Финансовая привлекательность технологии определятся возможностью:
- распределения во времени полных затрат на линию путем постепенного доведения числа волокон до количества, определенного проектной документацией;
- однократного характера выполнения чисто строительных работ в линейной части;
- возможность многократного использования проложенных трубок;
- высокой скорости подачи информационного сервиса в конкретную точку при наличии проложенных до нее трубок после поступления соответствующей заявки.
На основании рис. 2 выгодность технологии с финансовой точки зрения значимо растет, если в линейной части системы связи массово используются кабели с небольшим количеством волокон.
В качестве недостатков техники укажем на:
- несколько большие внешние габариты и допустимые радиусы изгиба трубчатых кабелей по сравнению с традиционными;
- необходимость применения специальных технологических приспособлений для прокладки (см. ролики для протяжки кабеля, кабельные изгибы);
- требование чистоты канала и его чувствительность к сдавливающим воздействиям.
Сопоставление достоинств и недостатков технологии (последние не носят принципиального характера) с учетом емкости потенциальных областей ее применения показывает наличие перспектив ее практического внедрения. При этом рассматриваемая технология в наибольшей степени востребована на тех уровнях системы волоконно-оптической связи, которые:
- реализуются на маловолоконных кабелях;
- в процессе эксплуатации объективно подвержены постоянным изменениям конфигурации в части количества световодов и топологии линейной части.
К таковым относятся в первую очередь сети доступа и внутриобъектовые информационные системы.
Физические процессы при задувке ВОЛС и ее особенности
Суть технологии пневматической прокладки заключается в том, что по трассе вначале прокладываются так называемые трубчатые кабели, отдельные каналы которых имеют круглое поперечное сечение, предназначены для прокладки в них оптических волокон или кабельных сборок на их основе и защиты их от внешних влияющих факторов окружающей среды.
С механической точки зрения цепь передачи вне зависимости от ее исполнения (оптоволокно, витая пара, коаксиальная трубка) можно рассматривать как струну или нить с конечной жесткостью, которая стремится принять в трубчатом канале форму геликоиды. Прямое продвижение подобной струны по каналу на сколь-нибудь большое расстояние невозможно из-за постоянного роста силы трения по мере увеличения дальности захода в канал. Подавления этого эффекта можно добиться, если цепь передачи находится в потоке газа (отсюда и термины – «пневматическая прокладка оптоволокна», «задувка ВОЛС», «задувка оптического кабеля»), который за счет неизбежной турбулентности пограничного с поверхностью слоя цепи фактически увлекает ее за собой.
При этом распределение аэродинамических сил таково, что, начиная с определенной минимальной скорости прокачки газа по каналу, данная нить распрямляется за счет выталкивания в область оси канала и фактически плывет в потоке, не касаясь стенок. Отсутствие прямого взаимодействия волокна и стенок канала снижает силу трения Fтр до нуля, что обеспечивает возможность продвижения. В схематическом виде эти эффекты показаны на рис .3.
Рис. 3. Положение волоконного световода в трубчатом канале при отсутствии воздушного потока и наличии внешнего подающего усилия с силой F (слева) и при его наличии (справа)
Усилие продвижения теоретически может создаваться также потоком жидкости, но на практике подобный подход не применяется из-за сложности просушки внутренней поверхности канала после завершения прокладки.
Дополнительно укажем на такое важное эксплуатационное преимущество рассматриваемой технологии как ее обратимость: при необходимости ненужное волокно просто выдувается из канала.
Несмотря на очевидность идеи, технология пневматической прокладки оптики получила практическую реализацию только после внедрения в телекоммуникации волоконно-оптических систем связи. Это связано с тем, что погонная масса волоконного световода по меньшей мере на два порядка меньше, чем у медного провода. Поэтому эффекта “вывешивания” нити цепи передачи в потоке воздуха можно добиться при относительно умеренных диаметрах канала и расходах газа.
Варианты исполнения световодов и волоконно-оптических микрокабелей для задувки
Рис. 4. Четырёхволоконный микрокабель внешнего исполнения для систем задувки
Волоконные световоды и оптические кабели на их основе не должны отличается от традиционных волокон в части оптической спецификации. Одновременно, механическая конструкция волокон и сборок на их основе должна быть в максимально полной степени адаптированы к условиям прокладки в трубках. Последнее выражается в том, что:
- гибкость как отдельного волокна, так и кабелей на их основе должна быть доведена до максимально возможных значений в сочетании с предельной минимизацией погонной массы этих компонентов;
- структура верхней поверхности оболочки волокна/кабеля целенаправленно модифицируется для получения максимальной турбулентности пограничного слоя, что значимо увеличивает продвигающее усилие;
- для сетей доступа, трубчатые кабели которых прокладываются под землей, должна быть обеспечена дополнительная защита от воздействия влаги.
Задача адаптации под условия прокладки решается следующим образом. Гибкость наращивается традиционным способом: уменьшением внешнего диаметра и применением соответствующих материалов оболочек. В рамках реализации этой стратегии диаметр вторичного защитного покрытия волокон внутренней прокладки уменьшается с традиционных 900 мкм до примерно 500 мм. Кабель внешней прокладки обычно содержит не более четырех световодов в первичном защитном покрытии (возможно их наращивание до 18 при возникновении такой потребности), выполнен с использованием тонкостенной внешней трубки, без зазора одетой на сборку волокон, см. рис.4.
Все это позволяет удержать его внешний диаметр в пределах 2– 3 мм в зависимости от волоконности. Оставшиеся свободные внутренние пустоты заполняют гидрофобным гелем, что обеспечивает необходимую влагостойкость. Из-за своих предельно минимизированных размеров данное изделие часто называют микрокабелем (его не следует путать с волокном во вторичном буферном покрытии, в данном случае речь идет о полноценном кабеле с волокнами и внешней оболочкой).
Рис. 5. Средства структурирования верхней поверхности микрокабелей: слева — стеклянные шарики, справа – обмотка арамидной нитью
Необходимая эксплуатационная надежность трубчатого канала достигается увеличением толщины его стенок и применением влагостойкой внешней оболочки.
Поставка кабелей и волокон выполняется на катушках, максимальная длина составляет 6 км, что представляет собой удачный компромисс между обеспечиваемой наибольшей дальностью прокладки, а также удобством транспортировки до места прокладки и работы с точки зрения массогабаритных показателей.
Для наращивания усилия продвижения в потоке газа выполняется дополнительное структурирование верхней поверхности вторичного защитного покрытия волокна и оболочки кабеля с целью увеличения ее шероховатости. Типовое средство решение этой задачи – внедрение в верхнюю поверхность покрытия стеклянных микрошариков. Известно также применявшаяся на рубеже веков в системе RibboNet исполнение кабеля в виде ленты с дополнительной ее обмоткой с достаточно большим шагом арамидной нитью. Несмотря на заметное увеличение продвигающего усилия данное направление не получило дальнейшего развития из-за отличия формы поперечного сечения ленты от круга, что делает ее неудобной для прокладки по каналу, см. рис. 5.
Технические средства создания усилия продвижения волокон и кабелей по трубчатому каналу
Рис. 6. Варианты создания продвигающего усилия. Сверху-вниз: с помощью парашюта, гусеничным транспортером и потоком воздуха; валиковым механизмом и потом воздуха
Воздействия, которые обеспечивают продвижение отдельных волокон и кабелей по каналу, потенциально могут быть созданы:
- сосредоточенным тянущим усилием с помощью парашюта, который крепится к переднему концу прокладываемого кабеля;
- распределенным тянущим усилием, создаваемым потоком воздуха в трубчатом канале;
- толкающим усилием на входе в канал, развиваемым соответствующим подающим механизмом.
Данные механизмы схематически представлены на рис. 6., независимы друг от друга и при необходимости могут использоваться совместно в произвольной комбинации. Парашют применяется исключительно при работе с типовыми безбронными кабелями на магистральных участках сети при условии внутреннего диаметра трубки 40 мм и более. На сетях доступа и непосредственно на объектах недвижимости используются последние две возможности, что позволяет довести максимальную протяженность трубчатого канала до 1500 м.
Для дальнейшего наращивания максимальной протяженности канала и достижения его длины до 6000 м практикуется каскадное включение технологического оборудования, устанавливаемого в промежуточных точках. При такой схеме реализации прокладки кабель, выходящий из канала, сразу же вводится в подающий механизм того комплекта технологического оборудования, который находится в этой промежуточной точке, и отправляется в следующий канал. Для устранения вредных последствий отсутствия механической синхронизации подающих механизмов, из кабеля, выходящего из канала, предварительно формируется запас с укладкой в промежуточный круглый бункер и компенсационная петля на входе в подающий механизм.
Собственно, подающий механизм, который устанавливается на входе в канал, сматывает кабель/волокно с катушки и создает толкающее усилие, может быть выполнен по двум схемам. Исторически первой применялось исполнение его рабочего органа в виде двух гусениц, которые в рабочем положении плотно охватывали прокладываемый по каналу компонент. В последнее время быстро растет популярность использования более простых, надежных и компактных системы на основе валикового механизма. Мягкий бандаж, который охватывает валик, довольно быстро изнашивается при интенсивном использовании. Поэтому эти валики выполняют сменными и вводят в комплект аксессуаров под отдельным заказным номером.
Рис. 7. Установка валикового подающего механизма и пневматической технологической головки на трубчатый канал
Подающий механизм всегда работает в паре с технологической головкой для подачи сжатого воздуха. Эти два элемента собираются в единый блок перед началом работы, что устраняет опасность повреждения кабеля/волокна и появления повышенного трения. Головка одевается непосредственно на трубку, для чего снабжена соответствующим гнездом. Имеет также обратный клапан, который установлен на входе, обеспечивает проход через него кабеля и минимизирует бесполезные потери сжатого воздуха из-за стравливания в окружающую среду, см. рис. 7.
Конструктивные особенности трубчатого кабеля и отдельных трубок
Трубчатый кабель представляет собой одну или несколько тонкостенных полимерных трубок, рассчитанных на внутреннее давление до 10 — 15 бар и имеющих внешний диаметр 5 мм и более, которые удерживаются в общей структуре защитной оболочкой. Собственно, наличие общей оболочки является основанием для отнесения этих изделий к кабелям. При создании разводки внутри здания применяются также обычные трубки, которые при необходимости групповой прокладки могут скрепляться в единое целое обмоткой лентами.
Рис. 8. Трубчатые кабели с различным количеством каналов
Из-за довольно высокой механической прочности трубки в случае использования полноценной внешней оболочки последняя имеет небольшую толщину, в результате чего трубчатый кабель с двумя и более трубками приобретет характерную некруглую в сечении форму, см. рис. 8.
При необходимости увеличения стойкости к растягивающим усилиям в состав сердечника кабеля обычным образом вводят стержневые упрочняющие элементы.
Используются два варианта трубок по внутреннему/внешнему диаметрам: например, 3,5/5 и 6/8 мм или 5/7 и 6/10 мм. Основной считается малая трубка, трубка с большим диаметром применяется при необходимости создания каналов с длиной свыше пятисот метров. Количество поворотов при соблюдении ограничений по минимальному радиусу изгиба практически не ограничено (прямое следствие распределенного характера приложения продвигающего усилия и отсутствия трения о стенки на большей части длины трассы), скорость прокладки в благоприятных условиях достигает 50 метров в минуту.
Рис. 9. Исполнение внутренней поверхности каналов для пневматической прокладки: слева – слой полимерной твердой смазки, справа – микроструктурирование
Для минимизации усилия трения прокладываемого кабеля или волокна о стенки канала используется два основных приема. Первый из них основан на применении дополнительного внутреннего покрытия из полимерного материала с минимальным коэффициентом трения (т.н. твердая смазка). В основу второго способа положена минимизация площади соприкосновения прокладываемого кабеля/волокна со стенками канала. Для этого их внутренняя поверхность структурируется мелкими выступами треугольной в плане формы, см. рис. 9.
Для создания внутриобъектовых информационных систем, реализующих подход “FTTD – волокно до рабочего места”, некоторые кабельные заводы серийно выпускают комбинированные кабели, содержащие как трубку, так и витую пару. Трубка изначально предназначена для доведения волокна до рабочего места, витая пара рассматривается как средство поддержки функционирования традиционного аналогового или цифрового телефона. С учетом чувствительности трубки к сдавливающим воздействиям в этой области довольно популярны усиленные конструкции в исполнении heavy-duty с общей защитной оболочкой, см. рис. 10.
Рис. 10. Комбинированные кабели внутриобъектовой прокладки в вариантах zip-cord (слева) и heavy-duty (справа)
С учетом малой массы и поперечного сечения одиночного световода при характерных для внутриобъектовых систем длинах трасс обычно не свыше 200 – 300 метров в одной трубке последовательно может быть проложено до 12 волокон.
Аксессуары для формирования системы каналов и задувки оптического кабеля
Для реализации пневматической прокладки, кроме специального волокна и трубчатого кабеля, требуется ряд дополнительных компонентов. К таковым относятся:
- источник сжатого газа;
- подающая головка с приводом и элементами подключения источника сжатого газа;
- средства для сращивания волокон и выполнения ответвлений в промежуточных точках;
- элементы для проверки исправности каналов и их герметизации.
Функции источника сжатого газа может выполнять компрессор или баллон. В последнем случае применяют как сжатый воздух, так и азот. На выход источника обязательно устанавливают осушитель, который препятствует попаданию влаги в канал.
Подающую головку в большинстве случаев выполняют с раскрывающимся корпусом, что облегчает ввод в нее кабеля перед началом прокладки. Привод головки – электрический, может быть, как интегральным, так и с помощью внешнего устройства.
Рис. 11. Y-муфта системы пневматической прокладки «оптики»
В качестве элементов сращивания трубок применяют малогабаритные микромуфты с кольцевыми уплотнителями, в которые с двух сторон просто вставляют трубки с ровно отрезанным концом. Корпус компонента выполнен из прозрачного пластика, что позволяет визуально контролировать правильность его установки на трубки.
В место выполнения отвода устанавливается ответвительная муфта. Из-за сравнительно большой величины минимально допустимого радиуса изгиба трубки это изделие имеет характерную Y-образную форму с боковым отводом несколько меньшего диаметра, что определяет ее каталожное наименование как Y-муфты. Имеет разрезную конструкцию с концевыми уплотнителями, устанавливается прямо на трубчатый кабель, допускает многократную переустановку без замены уплотнителей. Габариты корпуса подобраны так, чтобы внутри оставалось достаточно места для установки соединительных микромуфт трубок, см. рис 11.
Готовность трубки к прокладке проверяется прогонкой по ней шарика, который задерживается на дальнем конце соответствующим уловителем.
Особенности задувки ВОЛС в сетях доступах и при внутриобъектовой прокладке
Первые образцы оборудования для задувки оптоволокна отличались неудовлетворительными массогабаритными показателями, что становилось серьезным ограничивающим обстоятельством при внедрении этой технологии на сетях доступа и внутриобъектовых системах. Понимание наличия этого сдерживающего фактора привело к выполнению соответствующих разработок, практическое внедрение которых позволило ликвидировать данный недостаток.
С учетом относительно небольшого расхода сжатого воздуха вместо компрессора с приводом от бензогенератора или электродвигателя вполне может использоваться один или два небольших газовых баллона, которые переносятся в рюкзаке по образцу акваланга.
Рис. 12. Комплект технологических приспособлений Katimex X-Blow Micro для выполнения пневматической прокладки оптоволокна
В качестве привода подающей головки с учетом относительно небольших усилий допустимо применять обычный шуроповерт, фиксатор которого одевается на выступающую ось одного из приводных валиков подающей головки.
Для удобства ввода волокна в трубку подающая головка монтируется на подставке-треноге с возможностью изменения высоты и углов установки по двум направлениям. Регулятор углов установки выносится на треногу, а головка снабжается соответствующим креплением. Тренога с решулируемыми по высоте коленами входит в комплектацию X-Blow Micro Deluxe компании Katimex.
Комплект аксессуаров, в большем или меньшем объеме используемых в процессе работы, укладывают в удобный для переноски плоский чемоданчик. Под его откидной крышкой находится панель с гнездами для укладки приспособлений и инструментов, см. рис 12, 13. Для более точного удовлетворения потребностей клиента в производственную программу вводится ряд таких наборов, которые отличаются только полнотой включенных в их состав инструментов. Например, компания Katimex предлагает четыре варианта подобных наборов от стартового до профессионального.
Технология задувки оптического волокна в микротрубки также демонстрируется на этом видео:
Заключение
Изложенный выше материал позволяет констатировать следующее:
- Технология задувки оптоволоконных кабелей представляет собой полноценное функционально законченное средство формирования линейной части кабельных систем связи.
- Наибольший эффект от обращения к рассмотренной технологии достигается при построении волоконно-оптических сетей доступа и магистральных подсистем внутриобъектовых локальных сетей.
- Наиболее сильная сторона технологии – возможность распределения во времени капитальных затрат на создание связной инфраструктуры и уменьшение времени организации полноценной связи буквально до нескольких часов после поступления соответствующей заявки от клиента.
- Для задувки оптических кабелей привлекаются специально доработанные в механической части световоды и кабели.
- Аппаратные средства, используемые в процессе реализации технологии пневматической прокладки, представлены функционально законченным комплектом инструментов, полноценно адаптированы для работы в характерных для фокусной области применения стесненных условиях и по удобству своего использования полностью соответствует современным требованиям.
- При реализации технологии могут быть массово использованы элементы общего назначения (шуруповерты, баллоны со сжатым газом), что сводит к минимуму номенклатуру специализированных уникальных компонентов.
Получите лучшую цену на систему Katimex X-Blow Micro
Заполните эту форму, чтобы получить коммерческое предложение со скидкой на систему пневматической прокладки оптического кабеля Katimex X-Blow Micro:
Источник