Меню

Расход площадь сечения трубы скорость



Расход площадь сечения трубы скорость

Диаметр трубопроводов, скорость течения и расход теплоносителя.

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе.
2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

S-Площадь сечения м 2 внутреннего просвета трубы
π-3,14-константа — отношение длины окружности к ее диаметру.
r-Радиус окружности, равный половине диаметра, м
Q-расход воды м 3 /с
D-Внутренний диаметр трубы, м
V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя — является силой сопротивления.

Это сопротивление, называют — потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение
2. Находим расход
D=12мм=0,012 м
п=3,14

S=3.14•0,012 2 /4=0,000113 м 2

Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Q=40л/мин=0,000666666 м 3 /с

Из выше указанных формул получил такую формулу.

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Читайте также:  Как штукатурить стены под трубами
Чем длиннее труба, тем больше потеря напора.
Чем меньше диаметр, тем больше потеря напора.
Чем выше скорость теплоносителя в трубе, тем больше потеря напора.
Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Более детально потеря напора по длине трубопровода рассматривается в этой статье:

А теперь рассмотрим задачу из реального примера.

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

D=100 мм = 0,1м
L=376м
Геометрическая высота=17м
Отводов 21 шт
Напор насоса= 0,5 МПа (50 метров водного столба)
Максимальный расход=90м 3 /ч
Температура воды 16°С.
Труба стальная железная

Найти максимальный расход = ?

Решение на видео:

Для решения необходимо знать график насосов: Зависимость расхода от напора.

В нашем случае будет такой график:

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).

Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).

Поэтому решаем задачу ступенчато.

Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.

Находим скорость движения воды

Q=45 м 3 /ч = 0,0125 м 3 /сек.

V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с

Находим число рейнольдса

Читайте также:  Термоизолирующие обсадные трубы термокейсы

ν=1,16•10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на вторую область при условии

10•D/Δэ 0.25 =0,11•( 0,0001/0,1 + 68/137069) 0,25 =0,0216

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.

Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:

Теперь делаем оригинальный расчет при расходе равный 64м 3 /час

Q=64 м 3 /ч = 0,018 м 3 /сек.

V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/197414) 0,25 =0,021

h=λ•(L•V 2 )/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.

Отмечаем на графике:

Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.

Для проверки проверим:

Q=54 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

Итог: Мы попали на Нпот=14,89=15м.

А теперь посчитаем сопротивление на поворотах:

Формула по нахождению напора на местном гидравлическом сопротивление:

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.

Читайте также:  Какие трубы лучше всего использовать для водоснабжения

Скорость 1,91 м/с

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м.

Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.

Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.

Давайте теперь решим целиком задачку с отводами.

При расходе 45 м 3 /час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ•(V 2 )/2•9,81=(1•2,29 2 )/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.

Складываем потери напора: 10,46+5,67=16,13м.

Отмечаем на графике:

Решаем тоже самое только для расхода в 55 м 3 /ч

Q=55 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.

Складываем потери: 14,89+3,78=18,67 м

Рисуем на графике:

Ответ: Максимальный расход=52 м 3 /час. Без отводов Qmax=54 м 3 /час.

В итоге, на размер диаметра влияют:

1. Сопротивление, создаваемое трубой с поворотами
2. Необходимый расход
3. Влияние насоса его расходно-напорной характеристикой

Если расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Данная статья является частью системы: Конструктор водяного отопления

Источник