Меню

Формула расчета местных сопротивлений трубопроводов



Гидравлическое сопротивление

Выполнение расчета гидравлического сопротивления отдельного трубопровода и всей системы в комплексе является ключевой задачей в гидравлике, решение которой позволяет подобрать сечения труб и насос с необходимыми значениями давления и расхода в рабочем режиме.

В одной из ранних статей на блоге рассмотрен простой пример расчета трубопровода с параллельными участками с использованием понятия «характеристика сопротивления». В конце статьи я анонсировал: «Можно существенно повысить точность метода…». Под этой фразой подразумевалось учесть зависимость характеристик сопротивления от расхода более точно. В том расчете характеристики сопротивлений выбирались из таблиц по диаметру трубы и по предполагаемому расходу. Полковов Вячеслав Леонидович написал взамен таблиц пользовательские функции в Excel для более точного вычисления гидравлических сопротивлений, которые любезно предоставил для печати. Термины «характеристика сопротивления» и «гидравлическое сопротивление» обозначают одно и то же.

Краткая теория.

В упомянутой выше статье теория вкратце рассматривалась. Освежим в памяти основные моменты.

Движение жидкостей по трубам и каналам сопровождается потерей давления, которая складывается из потерь на трение по длине трубопровода и потерь в местных сопротивлениях – в изгибах, отводах, сужениях, тройниках, запорной арматуре и других элементах.

В гидравлике в общем случае потери давления вычисляются по формуле Вейсбаха:

∆Р=ζ·ρ·w²/2, Па, где:

  • ζ – безразмерный коэффициент местного сопротивления;
  • ρ – объёмная плотность жидкости, кг/м 3 ;
  • w – скорость потока жидкости, м/с.

Если с плотностью и скоростью всё более или менее понятно, то определение коэффициентов местных сопротивлений – достаточно непростая задача!

Как было отмечено выше, в гидравлических расчетах принято разделять два вида потерь давления в сетях трубопроводов.

  1. В первом случае «местным сопротивлением» считается трение по длине прямого участка трубопровода. Перепад давления для потока в круглой трубе рассчитывается по формуле Дарси-Вейсбаха:

∆Ртртр·ρ·w²/2=λ·L·ρ·w²/(2·D), Па, где:

  • L – длина трубы, м;
  • D – внутренний диаметр трубы, м;
  • λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси).

Таким образом, при учете сопротивления трению коэффициент потерь – коэффициент местного сопротивления – и коэффициент гидравлического трения связаны для круглых труб зависимостью:

ζтр=λ·L/D

  1. Во втором случае потери давления в местных сопротивлениях вычисляются по классической формуле Вейсбаха:

Коэффициенты местных сопротивлений определяются для каждого вида «препятствия» по индивидуальным эмпирическим формулам, полученным из практических опытов.

Выполним ряд математических преобразований. Для начала выразим скорость потока через массовый расход жидкости:

w=G/(ρ·π·D²/4), м/с, где:

  • G – расход жидкости, кг/с;
  • π – число Пи.

∆Ртр=8·λ·L·G²/(ρ·π²·D 5 ), Па;

Введем понятие гидравлических сопротивлений:

Sтр=λ·L·/(ρ·π²·D 5 ), Па/(кг/с)²;

Sм=8·ζм·/(ρ·π²·D 4 ), Па/(кг/с)².

И получим удобные простые формулы для вычисления потерь давления при прохождении жидкости в количестве G через эти гидравлические сопротивления:

Размерность гидравлического сопротивления (Па/(кг/с)²) определена массовой скоростью (кг/с) движения жидкости, а физические процессы в транспортных системах зависят от её объёмной скорости (м 3 /с), что учтено в формулах присутствием объёмной плотности ρ транспортируемой жидкости.

Читайте также:  Класс точности резьбы трубной цилиндрической резьбы

Для удобства последующих расчётов целесообразно введение понятия «гидравлическая проводимость» — а.

Для последовательного и параллельного соединений гидравлических сопротивлений справедливы формулы:

Sпар=1/(а1+a2+…+an, Па/(кг/с)²;

ai=(1/Si) 0,5 , (кг/с)/Па 0,5 .

Коэффициент гидравлического трения.

Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.

В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.

Обозначения в таблице:

  • Re – число Рейнольдса;
  • k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.

В [1] приведена еще одна интересная формула расчета коэффициента гидравлического трения:

λ=0,11·[(68/Re+k/D+(1904/Re) 14 )/(115·(1904/Re) 10 +1)] 0,25

Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!

Значения, полученные по этой формуле чрезвычайно близки значениям:

  • функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10 0,25 для зоны турбулентного характера потока при Re>4500;
  • в диапазоне 1500 Внимание!
  1. В зоне переходного характера потока происходит смена знака наклона кривой λ, что может вызвать неработоспособность систем автоматического регулирования!
  2. ПФ КтрТрубаВода(Pвода,tвода,G,D,kэ) при турбулентном потоке существенно зависит от значения – эквивалентной шероховатости внутренней поверхности трубы. В связи с этим следует обращать внимание на задание объективного значения с учётом используемых при монтаже труб (см. [2] стр.78÷83).

Расчет в Excel гидравлических сопротивлений.

Для облегчения выполнения рутинных гидравлических расчетов Полковов В.Л. разработал ряд пользовательских функций. Перечень некоторых из них, наиболее часто используемых на практике, приведен в таблице ниже.

Некоторые пояснения по аргументам пользовательских функций:

  • ГСдиффузор(Pвода,tвода,G,Dmin,Dmax,kэ,L) – свободные размеры;
  • ГСпереходДиффузор(Pвода,tвода,G,Dmin,Dmax,kэ) – стандартный переход;
  • ГСконфузор(Pвода,tвода,G,Dmin,Dmax,kэ,L) – свободные размеры;
  • ГСпереходКонфузор(Pвода,tвода,G,Dmin,Dmax,kэ) – стандартный переход;
  • ГСотвод(Pвода,tвода,G,D0,R0,Угол,kэ) – свободные размеры;
  • ГСотводГОСТ(Pвода,tвода,G,D,Угол,kэ) – стандартный отвод.

Приведённые пользовательские функции желательно использовать с учётом начального участка транспортирования (расстояния от одного гидравлического сопротивления до следующего гидравлического сопротивления). Это позволяет уменьшить погрешности расчётов, вызванных влиянием «неустановившегося» характера потока жидкости.

Для турбулентных течений длина начального участка должна быть не менее:

Lнач=(7,88·lg (Re) – 4,35)·D

Для ламинарных течений минимальная длина начального участка:

Здесь В=0,029 по данным Буссинекса, и В=0,065 по данным Шиллера, D — внутренний диаметр системы транспортирования.

Далее на скриншоте показана таблица в Excel с примерами расчетов гидравлических сопротивлений.

Литература:

  1. Черникин А.В. Обобщение расчета коэффициента гидравлического сопротивления трубопроводов // Наука и технология углеводородов. М.: 1998. №1. С. 21–23.
  2. И.Е. Идельчик, «Справочник по гидравлическим сопротивлениям». 3-е издание, переработанное и дополненное. Москва, «Машиностроение», 1992.
  3. А.Д. Альтшуль, «Гидравлические сопротивления», издание второе, переработанное и дополненное. Москва, «НЕДРА», 1982.
  4. Б.Н. Лобаев, д.т.н., профессор, «Расчёт трубопроводов систем водяного и парового отопления». Государственное издательство литературы по строительству и архитектуре. УССР, Киев, 1956.

Ссылка на скачивание файла: gidravlicheskie-soprotivleniya (xls 502,0KB).

Источник

Определение коэффициента местных сопротивлений в трубопроводе

ЛАБОРАТОРНАЯ РАБОТА № 4

Определение коэффициента местных сопротивлений в трубопроводе.

1. определить опытным путем потери напора при внезапном расширении (сужении) трубы и резком повороте канала, сравнив со значением потерь, вычисленными по теоретическим формулам;

2. определить коэффициенты местных сопротивлений по результатам опыта и теоретическим формулам, сравнить значения.

Оборудование и приборы: установка для исследования местных потерь напора, термометр, измерительная линейка, мерный сосуд, секундомер.

4.1. Теоретическое введение

Гидравлические сопротивления делятся на сопротивления сил вязкостного трения по длине трубы и местные сопротивления.

Потери напора на трение рассмотрены для случая равномерного движения жидкости, т. е. живое сечение вдоль трубы сохраняется постоянным. При движении жидкости в местных сопротивлениях поток претерпевает деформацию, что приводит к изменению форм и размеров живого сечения, и. следовательно, движение жидкости становится неравномерным, вследствие чего происходит изменение скорости потока. В местах изменения живого сечения или направления потока происходит его отрыв от стенок, и образуются так называемые вихревые или застойные зоны. Между основным потоком и вихревыми зонами осуществляется интенсивный обмен частицами жидкости, что является основным источником местных потерь энергии.

Количество энергии (напора), затрачиваемой на преодоление местных сопротивлений в напорных трубах (внезапное сужение и расширение, резкий поворот потока и т. д.) в большинстве случаев определяется с помощью коэффициентов, полученных опытным путем.

Потери напора в местных сопротивлениях при турбулентном режиме вычисляют по формуле Вейсбаха:

(4.1)

где — безразмерный коэффициент местного сопротивления,

— средняя скорость потока за местным сопротивлением.

Таким образом, местные потери напора пропорциональны скоростному напору.

Значения коэффициентов местного сопротивления получают экспериментально из формулы (4.1)

(4.2)

Если местное сопротивление (например, вентиль, диафрагма, колено и т. п.) расположено на горизонтальном трубопроводе постоянного сечения, то потери напора будут равны разности показаний пьезометров, установленных по обе стороны местного сопротивления.

Т. к. , то, подставляя это значение в формулу 4.2, получим формулу для определения коэффициента сопротивления опытным путём:

(4.3)

где – площадь сечения трубопровода до сопротивления.

– расход жидкости через сопротивление.

Ввиду сложности явлений, происходящих в жидкости при движении через местные сопротивления, теоретические формулы для определения потерь напора и коэффициентов местных сопротивлений удалось получить только для простейших видов, таких как внезапное расширение и сужение, плавное расширение или сужение, диафрагма и т. п.

Внезапное расширение.

При внезапном расширении потока в трубке от сечения 1 до сечения 2 жидкость не течёт по всему контуру стенок, а движется по плавным линиям токов. Вблизи стенок, где внезапно увеличивается диаметр трубы, образуется пространство, в котором жидкость находится в интенсивном вращательном движении. При таком интенсивном перемешивании происходит очень активное трение жидкости о твёрдые стенки трубы, а также трение внутри вращающихся потоков, вследствие чего происходят существенные потери энергии. Вследствие действия сил инерции потока движущейся жидкости вихреобразование прекращается на некотором достаточно большом расстоянии от зоны выхода жидкости в большее сечение. В результате давление нарастает постепенно.

На рисунке видно, что показания пьезометра во втором сечении больше, чем в первом. Показания пьезометра в данном случае зависят не только от потерь энергии, но и от величины давления. Давление во втором сечении становится больше из-за уменьшения скоростного напора за счёт расширения потока и падения скорости. В этом случае если бы не было потерь напора на местном сопротивлении, то высота жидкости во втором пьезометре была бы ещё больше. Теоретический коэффициент местного сопротивления при внезапном расширении потока равен:

(4.4)

если определять по скорости.

если определять по скорости .

Формула для теоретического определения потерь напора при внезапном расширении имеет вид:

(4.5)

Расчетную формулу для теоретического определения потерь напоров применительно к круглым трубам получил также французский инженер Борда.

(4.6)

т. е. потери напора вследствие внезапного расширения равны скоростному напору потерянной скорости.

Внезапное сужение потока

При внезапном сужении, так же как и при внезапном расширении потока, создаются пространства с завихрениями вращающейся жидкости, которые образуются в пристенном пространстве широкой части трубы. Такие же завихрения образуются в начале узкой части трубы за счёт того, что при входе в неё (узкую часть) жидкость продолжает некоторое время двигаться по инерции в направлении центра трубы, и основное русло потока ещё некоторое время продолжает сужаться. Следовательно, при внезапном сужении потока возникает как бы два подряд идущих местных сопротивления. Местное сопротивление за счёт сужения основного русла и сразу же за ним местное расширение, уже рассмотренное выше.

Теоретический коэффициент сопротивления при внезапном сужении потока можно определить по эмпирической зависимости, предложенной :

(4.7)

Произведя преобразования и подстановку определённых значений в формулу Борда (4.6) можно получить ещё одну формулу для теоретического определения коэффициента сопротивления при внезапном сужении потока:

, (4.8)

где .

Общей формулой для теоретического определения потерь напора при внезапном сужении потока в обоих случаях будет:

(4.9)

где — безразмерный коэффициент местного сопротивления,

— средняя скорость потока за местным сопротивлением.

Поворот потока (отвод или закруглённое колено) значительно увеличивает вихреобразование и, следовательно, потери энергии. Величина потерь существенно зависит от отношения и угла.

Теоретический коэффициент сопротивления при повороте можно определить по экспериментальной формуле. Для поворота под углом 900 и он равен:

(4.10)

Теоретический коэффициент сопротивления при повороте потока можно также определить по эмпирической зависимости, предложенной :

(4.13)

где эмпирический коэффициент A берётся из таблицы 4.1.

Формула для подсчёта теоретических потерь напора при повороте потока имеет вид:

(4.12)

Таблица для расчета добавочного коэффициента

Источник

Adblock
detector